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It is well known that semi-discrete high order discontinuous Galerkin (DG) methods 
satisfy cell entropy inequalities for the square entropy for both scalar conservation laws 
(Jiang and Shu (1994) [39]) and symmetric hyperbolic systems (Hou and Liu (2007) 
[36]), in any space dimension and for any triangulations. However, this property holds 
only for the square entropy and the integrations in the DG methods must be exact. 
It is significantly more difficult to design DG methods to satisfy entropy inequalities 
for a non-square convex entropy, and/or when the integration is approximated by a 
numerical quadrature. In this paper, we develop a unified framework for designing high 
order DG methods which will satisfy entropy inequalities for any given single convex 
entropy, through suitable numerical quadrature which is specific to this given entropy. Our 
framework applies from one-dimensional scalar cases all the way to multi-dimensional 
systems of conservation laws. For the one-dimensional case, our numerical quadrature is 
based on the methodology established in Carpenter et al. (2014) [5] and Gassner (2013) 
[19]. The main ingredients are summation-by-parts (SBP) operators derived from Legendre 
Gauss–Lobatto quadrature, the entropy conservative flux within elements, and the entropy 
stable flux at element interfaces. We then generalize the scheme to two-dimensional 
triangular meshes by constructing SBP operators on triangles based on a special quadrature 
rule. A local discontinuous Galerkin (LDG) type treatment is also incorporated to achieve 
the generalization to convection–diffusion equations. Extensive numerical experiments are 
performed to validate the accuracy and shock capturing efficacy of these entropy stable DG 
methods.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we will deal with the numerical approximation of systems of conservation laws in several space dimen-
sions. The general form is

∂u

∂t
+

d∑
j=1

∂f j(u)

∂x j
= 0, (x, t) ∈R

d × [0,∞) (1.1)
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where u = [u1, · · · , up]T denotes the vector of state variables taking values in a convex set � ∈ R
p , and the functions 

f j = [ f 1
j , · · · , f p

j ]T are called the flux functions. For each 1 ≤ j ≤ d, define the Jacobian matrix

A j(u) = f′j(u) = { ∂ f i
j

∂uk
(u)}1≤i,k≤p (1.2)

Then the system (1.1) is called hyperbolic if A(u, n) = ∑d
j=1 n j A j(u) has p real eigenvalues and a complete set of eigenvec-

tors for all u ∈ �, n ∈ R
d .

It is well known that shock waves or contact discontinuities might develop at finite time even for smooth initial condi-
tion. Hence we have to interpret (1.1) in the sense of distribution and search for weak solutions. However, weak solutions 
are not necessarily unique. In order to select the “physically relevant” solution among all weak solutions, we usually use the 
following entropy functions as the admissibility criterion.

Definition 1.1. Assume that � is convex. A convex function U : � →R is called an entropy function for (1.1) if there exist d
functions F j : � → R, 1 ≤ j ≤ d, called entropy fluxes, such that the following integrability condition holds

U ′(u)f′j(u) = F ′
j(u), 1 ≤ j ≤ d (1.3)

where U ′(u) and F ′
j(u) are viewed as row vectors.

In smooth regions, we can left-multiply U ′(u) to (1.1) and obtain an extra conservation law for the entropy function

∂U (u)

∂t
+

d∑
j=1

∂ F j(u)

∂x j
= 0 (1.4)

Yet, at shock waves, we require the entropy to dissipate, which leads to the following definition of an entropy solution.

Definition 1.2. A weak solution u of (1.1) is called an entropy solution if for all entropy functions U , we have

∂U (u)

∂t
+

d∑
j=1

∂ F j(u)

∂x j
≤ 0 (1.5)

in the sense of distribution.

Formally integrating the entropy condition (1.5) in space, we come up with the bound

d

dt

∫
Rd

U (u)dx ≤ 0 (1.6)

That is, the total entropy is non-increasing with respect to time. If we further assume that U is uniformly convex, the 
above bound indeed implies an a priori L2 bound of the entropy solution [32]. For more details on the theory of systems of 
conservation laws, we refer the readers to [14,22,23] and the references therein.

Entropy conditions play an essential role in the well-posedness of hyperbolic conservation laws. It is natural to seek nu-
merical schemes which satisfy a discrete version of (1.5) (and (1.6) if we impose periodic or compactly supported boundary 
conditions), i.e., entropy stable schemes. Entropy stability is the nonlinear analogue of the standard L2 stability discussed in 
[28], and can be translated to L2 stability for uniformly convex U .

Entropy stability analysis is well-developed for first order schemes. In the case of scalar conservation laws (p = 1), 
monotone schemes were shown to be consistent with all entropy conditions and thus convergent to the unique entropy 
solution [13,31]. The convergence is guaranteed by the total variation diminishing (TVD) property [30] and Lax–Wendroff 
type argument [43]. Osher [46] established a more general class of schemes, called E-schemes, that preserve all entropy 
inequalities. Osher and Tadmor [47] also proved that E-schemes are in fact necessary for all entropy inequalities to be valid. 
As for systems (p > 1), the Godunov type schemes introduced in [32] are entropy stable for all entropy functions.

Both monotone schemes and E-schemes are at most first order (spatially) accurate [31,46]. Therefore when designing 
high-order schemes, one usually expects entropy stability for only a single entropy function. In the realm of finite volume 
methods, Tadmor [56,57] built the framework of entropy conservative fluxes and entropy stable fluxes (for a given entropy 
function), and Lefloch, Mercier and Rohde [44] provided a procedure to compute high order accurate entropy conservative 
fluxes. Using these ingredients, along with the sign property of the essentially non-oscillatory (ENO) reconstruction [18], 
Fjordholm, Mishra and Tadmor [17] presented a version of ENO schemes, called TeCNO, that are entropy stable and arbitrarily 
order accurate. A second order generalization to higher dimensional unstructured meshes is proposed in [49]. Besides, let us 
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remark that Bouchut, Bourdaris and Perthame [4] gave a second order accurate scheme that satisfies all entropy inequalities. 
It does not contradict the argument by Osher and Tadmor since their scheme was not written in the standard finite volume 
form.

Another popular category of high order numerical schemes is the discontinuous Galerkin (DG) method developed in [10,
9,8,12]. Jiang and Shu [39] proved that the semi-discrete DG schemes satisfy a discrete entropy inequality for the square 
entropy for scalar conservation laws, in arbitrary dimension and on arbitrary triangulations, which is extended to symmetric 
systems by Hou and Liu [36]. However, these results are limited to the square entropy function (L2 norm) only, as the test 
functions must live in the space of numerical solutions and then U ′(u) has to be linear. For systems whose Jacobian matrices 
are not symmetric, since the square function is not an entropy function, there is no entropy stability for the (unmodulated) 
DG methods. Moreover, all integrals in the DG formulation are assumed to be evaluated exactly for the proof of this entropy 
condition, which can be costly or even impossible to implement (e.g. in the case of Euler equations when the flux functions 
are rational functions of u). In practice one often uses quadrature rules and stability might be affected. An alternative 
approach, initiated by Hughes, Franca and Mallet [37], approximates the entropy variables v = U ′(u)T in the discrete space. 
Then entropy stability is achieved for any given entropy function. The drawback of this approach is that it requires nonlinear 
solvers at each time step, even for explicit time discretization. Hence space-time DG formulation is often preferred [1,35]. 
In addition, this approach still assumes exact integration for the proof of entropy stability.

In recent years, there have been some developments on entropy stable DG type schemes directly built upon numerical 
integration. DG schemes can be recast into the nodal formulation after quadrature [41,33]. By choosing Gauss–Lobatto 
quadrature points, the resulting discrete operators satisfy the summation-by-parts (SBP) property [19]. Thanks to the SBP 
property, the nodal DG scheme can be adjusted to fulfill an arbitrary entropy condition, while conservation and high order 
accuracy are maintained. This adjustment is related to the splitting technique for the Burgers equation [16,19] and shallow 
water equations [20], but not equivalent to any kind of splitting for the Euler equations [15,5].

The main objective of this paper is to construct a unified framework of entropy stable high order nodal DG schemes. We 
start with an one-dimensional methodology, in which the entropy is conserved within elements, but dissipates at element 
interfaces. To be more precise, the single element discretization is based on entropy conservative fluxes, and the weak 
coupling between neighboring elements relies on entropy stable fluxes. Just like classical DG methods, we can apply a 
TVD/TVB limiter and/or a bound-preserving limiter to control oscillations and enhance robustness without violating the 
entropy condition. Next we will move to the extension to two-dimensional triangular meshes. The main difficulty is to find 
high order SBP operators on triangles. Inspired by [34], we will deduce the formulation of SBP operators by introducing 
a special quadrature rule. Even though we generally assume periodic or compactly supported boundary condition, we will 
prove that the standard reflecting technique is entropy stable at the wall boundary for the Euler equations. Finally, we will 
consider convection–diffusion equations, for which a nodal version of the local discontinuous Galerkin (LDG) method [11,6]
will be included to handle the diffusive term while entropy stability still holds.

The rest of this paper is organized as follows. Section 2 is a brief tutorial on entropy analysis that is necessary for the 
subsequent sections. Section 3 presents the one-dimensional entropy stable nodal DG schemes as a reinterpretation of the 
methods in [5,19,20]. Compatibility with different limiters is also discussed. Section 4 is the major contribution of this pa-
per, which provides SBP operators on triangles and entropy stable nodal DG schemes on triangular meshes. Entropy stability 
of wall boundary conditions will be proved. Section 5 explains an LDG type approach to convection–diffusion equations. Nu-
merical experiments including smooth accuracy tests and discontinuous tests are reported in section 6. Concluding remarks 
are given in section 7. A few technical details are provided in the appendix.

2. More on entropy analysis

2.1. Symmetrization

We continue the entropy analysis in section 1. Define the entropy variables v = U ′(u)T . If we assume that U is strictly 
convex, the mapping u �→ v is one-to-one and can be regarded as a change of variables. Setting g j(v) = f j(u(v)), we rewrite 
the system (1.1) according to the entropy variables

u′(v)
∂v

∂t
+

d∑
j=1

g′
j(v)

∂v

∂x j
= 0 (2.1)

By strict convexity, u′(v) = (U ′′(u))−1 is symmetric positive-definite. The following theorem tells us the symmetry of g′
j(v)

is equivalent to the existence of entropy function [24,45]. Proof can be found in [23].

Theorem 2.1. A strictly convex function U serves as an entropy function if and only if u′(v) is symmetric positive-definite and g′
j(v) is 

symmetric for each 1 ≤ j ≤ d. (2.1) is called the symmetrization of (1.1). Moreover, A(u, n) = ∑d
j=1 n jf′j(u) = ∑d

j=1 n jg′
j(v)v′(u) is 

similar to
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v′(u)
1
2 (

d∑
j=1

n jg
′
j(u))v′(u)

1
2 ,

which is another symmetric matrix. Hence existence of entropy function implies that (1.1) is hyperbolic.

Now since u′(v) and g′
j(v) are both symmetric, there exist functions φ(v) and ψ j(v), called potential function and 

potential fluxes, such that

φ′(v) = u(v)T , ψ ′
j(v) = g j(v)T , 1 ≤ j ≤ d (2.2)

It is easy to verify that

φ(v) = u(v)T v − U (u(v)), ψ j(v) = g j(v)T v − F j(u(v)) (2.3)

Entropy conditions follow from the vanishing viscosity approach. Consider the following viscous perturbation of the 
system (1.1)

∂uε

∂t
+

d∑
j=1

∂f j(uε)

∂x j
= ε�uε, ε > 0 (2.4)

By left-multiplying U ′(uε) to (2.4) and integrating by parts (formally),

∂U (uε)

∂t
+

d∑
j=1

∂ F j(uε)

∂x j
= −ε

d∑
j=1

∂uT
ε

∂x j
U ′′(uε)

∂uε

∂x j
≤ 0

Sending ε → 0+ we recover the entropy condition (1.5). For some physical problems (e.g. compressible Navier–Stokes equa-
tions), it is necessary to look at the more general form of viscous perturbation

∂uε

∂t
+

d∑
j=1

∂f j(uε)

∂x j
= ε

d∑
j,l=1

∂

∂x j
(C jl(uε)

∂uε

∂xl
) (2.5)

where C jl(uε) are p × p matrices. Let vε = v(uε) and Ĉ jl(vε) = C jl(uε)u′(vε). Then

∂uε

∂t
+

d∑
j=1

∂f j(uε)

∂x j
= ε

d∑
j,l=1

∂

∂x j
(̂C jl(vε)

∂vε

∂xl
) (2.6)

Left-multiplying U ′(uε) = vT
ε to (2.6) gives us

∂U (uε)

∂t
+

d∑
j=1

∂ F j(uε)

∂x j
= −ε

d∑
j=1

∂vT
ε

∂x j
Ĉ jl(vε)

∂vε

∂x j

In order to make the right hand side non-positive, we have to assume the following admissibility condition⎡⎢⎣ Ĉ11(vε) · · · Ĉ1d(vε)
...

...

Ĉd1(vε) · · · Ĉdd(vε)

⎤⎥⎦ is symmetric semi-positive-definite (2.7)

Therefore, the change of variables u �→ v should symmetrize the viscous term simultaneously.

2.2. Examples

Here we present some examples of hyperbolic conservation laws and the corresponding entropy function–entropy flux 
pairs and potential function–potential flux pairs. For simplicity we only focus on one-dimensional systems.

Example 2.2.1. The linear symmetric system is of the form

∂u

∂t
+ ∂(Au)

∂x
= 0 (2.8)

where A is a constant symmetric matrix. The standard energy U = 1 uT u serves as an entropy function. Then v = u and
2
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F = 1

2
uT Au, φ = 1

2
uT u, ψ = 1

2
uT Au (2.9)

Example 2.2.2. The shallow water equations model water flows with a free surface under the influence of gravity. The 
governing equations (with flat bottom) are

∂

∂t

[
h

hw

]
+ ∂

∂x

[
hw

hw2 + 1
2 gh2

]
= 0 (2.10)

Here h and w are the water depth and velocity, and g stands for the gravity acceleration constant. In the absence of dry 
bed, the water depth is always positive and

� = {u ∈R
2 : h > 0} (2.11)

The total (kinetic and potential) energy U = 1
2 hw2 + 1

2 gh2 is a convex function of u ∈ � and serves as an entropy function 
with

v =
[

gh − 1
2 w2

w

]
, F = 1

2
hw3 + gh2 w, φ = 1

2
gh2, ψ = 1

2
gh2 w (2.12)

Example 2.2.3. The Euler equations of gas dynamics are

∂

∂t

⎡⎣ ρ
ρw

E

⎤⎦ + ∂

∂x

⎡⎣ ρw
ρw2 + p
w(E + p)

⎤⎦ = 0 (2.13)

Here ρ , w and p are the density, velocity and pressure of the gas. E is the total energy. In the case of polytropic ideal gas, 
the equation of state is

E = 1

2
ρw2 + p

γ − 1
(2.14)

where γ is ratio of specific heats. γ = 5/3 for monatomic gas and γ = 7/5 corresponds to diatomic molecules. Assume that 
there is no vacuum. Then density and pressure need to be positive and

� = {u ∈R
3 : ρ > 0, p > 0} = {u ∈R

3 : ρ > 0, (γ − 1)(E − (ρw)2

2ρ
) > 0} (2.15)

We can verify that � is a convex set and (2.13) is hyperbolic in �. The physical specific entropy is s = log(pρ−γ ). Harten 
[29] proved that there exists a family of entropy pairs that are related to s and symmetrize (2.13). However, if we also want 
to symmetrize the viscous term in the compressible Navier–Stokes equations with heat conduction [37], the only choice of 
entropy pair satisfying (2.7) is

U = − ρs

γ − 1
, F = − ρws

γ − 1
(2.16)

The corresponding entropy variables and potential function–potential flux pair are

v =
⎡⎢⎣ γ −s

γ −1 − ρw2

2p
ρw/p
−ρ/p

⎤⎥⎦ , φ = ρ, ψ = ρw (2.17)

3. Entropy stable high order nodal DG schemes in one dimension

In this section, we proceed to unravel the entropy stable nodal DG scheme for one-dimensional systems of conservation 
laws

∂u

∂t
+ ∂f(u)

∂x
= 0 (3.1)

Let us make some standard assumptions. Firstly, we have periodic or compactly supported boundary conditions. Secondly, 
time is always continuous, so that we conduct semidiscrete analysis. Finally, the numerical solution is kept within the set �. 
For instance, density and pressure are assumed to be positive for Euler equations.

Our starting point is the classical DG scheme. Given a domain decomposition

x1/2 < x3/2 < · · · < xN+1/2, Ii = [xi−1/2, x1+1/2], �xi = xi+1/2 − xi−1/2
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and the discrete DG space of polynomial degree k

Vk
h = {wh : wh|Ii ∈ [Pk(Ii)]p,1 ≤ i ≤ N} (3.2)

we seek uh ∈ Vk
h such that for each wh ∈ Vk

h and 1 ≤ i ≤ N ,∫
Ii

∂uT
h

∂t
whdx −

∫
Ii

f(uh)
T dwh

dx
dx = −̂fT

i+1/2wh(x−
i+1/2) + f̂T

i−1/2wh(x+
i−1/2) (3.3)

where ̂fi+1/2 is a single-valued numerical flux at the element interface, depending on the values of numerical solution from 
both sides

f̂i+1/2 = f̂(uh(x−
i+1/2),uh(x+

i+1/2)) (3.4)

In general, ̂ fi+1/2 is derived from some (exact or approximate) Riemann solver. (3.3) is usually called the weak form. We 
obtain the strong form after a simple integration by parts∫

Ii

(
∂uT

h

∂t
+ f(uh)

T

∂x
)whdx = (f(uh(x−

i+1/2)) − f̂i+1/2)
T wh(x−

i+1/2) − (f(uh(x+
i−1/2)) − f̂i−1/2)

T wh(x+
i−1/2) (3.5)

We are going to apply Legendre–Gauss–Lobatto quadrature rule with exactly k + 1 quadrature points to the two integrals in 
(3.3). Since the algebraic degree of accuracy is 2k − 1, the Gauss–Lobatto quadrature is not exact for the first integral, but is 
exact for the second term if f is linear.

3.1. Gauss–Lobatto quadrature and summation-by-parts

Consider the reference element I = [−1, 1] associated with Gauss–Lobatto quadrature points

−1 = ξ0 < ξ1 < · · · < ξk = 1

and quadrature weights {ω j}k
j=0. Define the Lagrangian (nodal) basis polynomials

L j(ξ) =
N∏

l=0
l 	= j

ξ − ξl

ξ j − ξl

such that L j(ξl) = δ jl . Let 〈·, ·〉 and 〈·, ·〉ω denote the continuous and discrete inner product

〈u, v〉 =
1∫

−1

uvdξ, 〈u, v〉ω =
k∑

j=0

ω ju(ξ j)v(ξ j)

The difference matrix D is set to be

D jl = L′
l(ξ j) (3.6)

and the mass matrix M and stiffness matrix S are defined as

M jl = 〈L j, Ll〉ω = ω jδ jl, so that M = diag{ω0, · · · ,ωk} (3.7)

S jl = 〈L j, L′
l〉ω = 〈L j, L′

l〉 (3.8)

The discrete inner product contributes to a diagonal mass matrix, but also introduces some integration error. Such technique 
is typically termed mass lumping. On the other hand, the stiffness matrix is integrated exactly as L j(ξ)L′

l(ξ) is of degree 
2k − 1.

Theorem 3.1 (Summation-by-parts property). Set the boundary matrix

B = diag{−1,0, · · · ,0,1} (3.9)

Then we have

S = M D, M D + DT M = S + S T = B (3.10)

which is a discrete analogue of integration by parts.
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Proof. Since S jl = ∑k
j=0 ωr L j(ξr)L′

l(ξr) = ω j L′
l(ξ j) = M jj D jl , clearly S = M D . Moreover,

S jl + Slj = 〈L j, L′
l〉 + 〈Ll, L′

j〉 = L j(1)Ll(1) − L j(−1)Ll(−1) = δkjδkl − δ0 jδ0l

Hence B = S + S T . �
Theorem 3.2. For each 0 ≤ j ≤ k we have

k∑
l=0

D jl =
k∑

l=0

S jl = 0,

k∑
l=0

Slj = τ j =

⎧⎪⎨⎪⎩
−1 j = 0

1 j = k

0 1 ≤ j ≤ k − 1

(3.11)

Proof. Since the sum of Lagrangian basis 
∑k

l=0 Ll(ξ) = 1,

k∑
l=0

D jl =
k∑

l=0

L′
l(ξ j) = 0,

k∑
l=0

S jl = ω j

k∑
l=0

D jl = 0

k∑
l=0

Slj =
k∑

l=0

B jl −
k∑

l=0

S jl =
K∑

l=0

B jl = B jj = τ j �

Using the matrices above, we are able to convert (3.3) into a compact matrix vector formulation based on nodal values. 
For clarity of notations we first work on scalar conservation laws. The weak form is∫

Ii

∂uh

∂t
whdx −

∫
Ii

f (uh)
dwh

dx
dx = − f̂ i+1/2 wh(x−

i+1/2) + f̂ i−1/2 wh(x+
i−1/2) (3.12)

By the change of variables between Ii and the reference element I = [−1, 1]

xi(ξ) = 1

2
(xi−1/2 + xi+1/2) + ξ

2
�xi

the weak form on I is

�xi

2

∫
I

∂uh

∂t
whdξ −

∫
I

f (uh)
dwh

dξ
dξ = − f̂ i+1/2 wh(xi(1)) + f̂ i−1/2 wh(xi(−1)) (3.13)

Now we bring forth vector notations. Let �ui denote the values of uh at Gauss–Lobatto points

�ui = [
uh(xi(ξ0)) · · · uh(xi(ξk))

]T

Likewise, we can define �wi and �f i

�wi = [
wh(xi(ξ0)) · · · wh(xi(ξk))

]T
, �f i = [

f (ui
0) · · · f (ui

k)
]T

We also put the numerical fluxes into a vector

�f i∗ = [
f̂ i−1/2 0 · · · 0 f̂ i+1/2

]T

After applying Gauss–Lobatto quadrature, (3.13) becomes

�xi

2
�wi

T
M

d �ui

dt
− (D �wi)T M �f i = − �wi

T
B �f i∗ (3.14)

Since �wi can be arbitrary,

�xi

2
M

d �ui

dt
− S T �f i = −B �f i∗ (3.15)

which is the nodal DG formulation [33]. Using the SBP property (3.10), we can deduce another equivalent characterization, 
corresponding to the strong form (3.5).
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�xi

2
M

d �ui

dt
+ S �f i = B( �f i − �f i∗)

�xi

2

d �ui

dt
+ D �f i = M−1 B( �f i − �f i∗) (3.16)

It is also closely related to the spectral collocation method with a penalty type boundary treatment.
For systems, the nomenclature is essentially the same. The weak and strong nodal forms are

�xi

2
M

d �ui

dt
− ST �fi = −B �fi∗ (3.17)

�xi

2

d �ui

dt
+ D�fi = M−1B(�fi − �fi∗) (3.18)

Everything is understood as a Kronecker product herein.

�ui =
⎡⎢⎣uh(xi(ξ0))

...

uh(xi(ξk))

⎤⎥⎦ , �fi =
⎡⎢⎣ f(ui

0)
...

f(ui
k)

⎤⎥⎦ , �fi∗ =
⎡⎢⎣ f̂i−1/2

...

f̂i+1/2

⎤⎥⎦

M = M ⊗ I p, D = D ⊗ I p, S = S ⊗ I p, B = B ⊗ I p

These nodal DG forms do not satisfy any entropy condition, even for the square entropy function where we have entropy 
inequality for classical DG forms. However, due to the flexibility of nodal representation, we can modify these nodal forms 
to make them entropy stable. The key to this modification is the entropy conservative fluxes and entropy stable fluxes 
proposed by Tadmor [56,57], and defined as follows.

Definition 3.1. A consistent, symmetric two-point numerical flux fS (uL, uR) is entropy conservative for a given entropy 
function U if

(vR − vL)
T fS(uL,uR) = ψR − ψL (3.19)

where vL,R and ψL,R are entropy variables and potential fluxes at the left and right states.

Definition 3.2. A consistent two-point numerical flux ̂f(uL, uR) is entropy stable for a given entropy function U if

(vR − vL)
T f̂(uL,uR) − (ψR − ψL) ≤ 0 (3.20)

3.2. Single element: entropy conservative fluxes

The first step is to achieve internal entropy balance. We will concentrate on a single element and omit the superscript i. 
The modified scheme reads

�x

2

du j

dt
+ 2

k∑
l=0

D jlfS(u j,ul) = τ j

ω j
(f j − f∗, j) (3.21)

Here fS(u j, ul) is the symmetric entropy conservative flux for a given entropy function U . Notice that (3.18) can be written 
as

�x

2

du j

dt
+

k∑
l=0

D jlf(ul) = τ j

ω j
(f j − f∗, j) (3.22)

Hence if we set fS (u j, ul) = 1
2 (f(u j) + f(ul)), we recover (3.18) (

∑k
l=0 D jlf(u j) = 0). However, generally 1

2 (f(u j) + f(ul)) is 
not entropy conservative.

The following theorem states that (3.21) is conservative, high order accurate and (internally) entropy conservative. The 
theorem is presented in [15]. We refine the proofs therein.

Theorem 3.3. If fS(u j, ul) is consistent and symmetric, then (3.21) is conservative and high order accurate. If we further assume that 
fS (u j, ul) is entropy conservative in the sense of (3.19), then (3.21) is also entropy conservative within a single element.
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Remark 3.1. The conservation and entropy conservation of the scheme are both in the discrete sense. Specifically, the discrete 
integral of u and U in the element are 

∑k
j=0

�x
2 ω ju j and 

∑k
j=0

�x
2 ω j U j . As for accuracy, assume that u is a smooth 

solution. Then the penalty term vanishes and we will show the truncation error at each collocation point is of k-th order

∂f(u)

∂x
(x(ξ j)) − 4

�x

k∑
l=0

D jlfS(u(x(ξ j)),u(x(ξl))) = O(�xk)

Notice that the truncation error is suboptimal, partly due to the fact that the Gauss–Lobatto quadrature is exact for polyno-
mials of degree only up to 2k − 1. In order to maintain optimal convergence, the algebraic degree of accuracy should be at 
least 2k (consult [8]). We will see suboptimal convergence in some numerical tests.

Proof. Conservation:

d

dt
(

k∑
j=0

�x

2
ω ju j) =

k∑
j=0

τ j(f j − f∗, j) − 2
k∑

j=0

k∑
l=0

S jlfS(u j,ul)

=
k∑

j=0

τ j(f j − f∗, j) −
k∑

j=0

k∑
l=0

(S jl + Slj)fS(u j,ul) (by symmetry)

=
k∑

j=0

τ j(f j − f∗, j) −
k∑

j=0

k∑
l=0

B jlfS(u j,ul) (SBP property)

=
k∑

j=0

τ j(f j − f∗, j) −
k∑

j=0

τ jf(u j) = −(f∗,k − f∗,0)

The only terms left are the interface numerical fluxes, which supports local conservation. It is also globally conservative 
since the interface numerical fluxes will cancel out when summing over elements.

Accuracy: let f̃S (x, y) = fS (u(x), u(y)) and f̃(x) = f(u(x)). Then f̃S is also symmetric and consistent in the sense that 
f̃S (x, x) = f̃(x). Hence

∂̃f

∂x
(x) = ∂ f̃S

∂x
(x, x) + ∂ f̃S

∂ y
(x, x) = 2

∂ f̃S

∂ y
(x, x)

Since the difference matrix D is exact for polynomials of degree up to k,

4

�x

k∑
l=0

D jl f̃S(x(ξ j), x(ξl)) = 2
∂ f̃S

∂ y
(x(ξ j), x(ξ j)) +O(�xk) = ∂̃f

∂x
(x(ξ j)) +O(�xk)

Therefore the truncation error is O(�xk) and the scheme is high order accurate.
Entropy conservation:

d

dt
(

k∑
j=0

�x

2
ω j U j) =

k∑
j=0

�x

2
ω jv

T
j

du j

dt
=

k∑
j=0

τ jv
T
j (f j − f∗, j) − 2

k∑
j=0

k∑
l=0

S jlv
T
j fS(u j,ul)

The second term is
k∑

j=0

k∑
l=0

(B jl + S jl − Slj)vT
j fS(u j,ul) =

k∑
j=0

τ jv
T
j f j +

k∑
j=0

k∑
l=0

S jl(v j − vl)
T fS(u j,ul)

=
k∑

j=0

τ jv
T
j f j +

k∑
j=0

k∑
l=0

S jl(ψ j − ψl) =
k∑

j=0

τ j(vT
j f j − ψ j)

Then

d

dt
(

k∑
j=0

�x

2
ω j U j) =

k∑
j=0

τ j(ψ j − vT
j f∗, j) = (ψk − vT

k f∗,k) − (ψ0 − vT
0 f∗,0) (3.23)

We only have element boundary terms, so that the scheme is locally entropy conservative. The global entropy stability 
remains unclear and will be discussed later. �
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In the scalar case, the entropy conservative flux is uniquely determined

f S(uL, uR) =
{

ψR−ψL
v R−v L

uL 	= uR

f (uL) uL = uR
(3.24)

A prototype model is the Burgers equation with square entropy function where f = U = u2

2 . Then f S (uL, uR) = 1
6 (u2

L +
uLuR + u2

R), which actually corresponds to the nodal DG discretization of the canonical skew-symmetric splitting of Burgers 
equation [19,55].

For systems, (3.19) is underdetermined and fS (uL, uR) is not unique. A generic choice of entropy conservative flux is the 
following path integration [57].

fS(uL,uR) =
1∫

0

g(vL + λ(vR − vL))dλ (3.25)

which may not have an explicit formula and can be computationally expensive. Fortunately, for many systems we are able 
to derive explicit entropy conservative fluxes that are easy to compute. Let us revisit the examples in Section 2.

Example 3.2.1. For a linear symmetric system, the entropy stable flux is simply the arithmetic mean

fS(uL,uR) = 1

2
(AuL + AuR) (3.26)

Therefore, (3.18) is already locally entropy (L2) conservative.

Example 3.2.2. For shallow water equations, an explicit entropy conservative flux is

fS(uL,uR) =
[ 1

2 (hL w L + hR w R)
1
4 (hL w L + hR w R)(w L + w R) + 1

2 ghLhR

]
(3.27)

It is also equivalent to the skew-symmetric splitting procedure in [20].

Example 3.2.3. For Euler equations, Ismail and Roe [38] suggested the following affordable entropy conservative flux

f 1
S = z2(z3)log

f 2
S = z3

z1
+ z2

z1
f 1

S

f 3
S = 1

2

z2

z1
(
γ + 1

γ − 1

(z3)log

(z1)log
+ f 2

S )

(3.28)

where

z =
⎡⎣ z1

z2

z3

⎤⎦ =
√

ρ

p

⎡⎣ 1
w
p

⎤⎦
zs and (zs)log are the arithmetic mean and the logarithmic mean

zs = 1

2
(zs

L + zs
R), (zs)log = zs

R − zs
L

log zs
R − log zs

L

, s = 1,2,3

Another entropy conservative flux, which also preserves kinetic energy, was recommended by Chandrashekar in [7]:

f 1
S = (ρ)log w

f 2
S = ρ

2β
+ w f 1

S

f 3
S =

( 1

2(γ − 1)(β)log
− 1

2
w2

)
f 1

S + w f 2
S

(3.29)

where

β = ρ

2p

Due to the presence of the logarithmic mean, these fluxes are no longer equivalent to any kind of splitting.
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3.3. Multiple elements: entropy stable fluxes

The single element analysis is not enough in that we are left with the element boundary terms in (3.23). The next 
theorem establishes that entropy stable interface numerical fluxes guarantee non-positive interface entropy production rate.

Theorem 3.4. If the numerical flux ̂f at the element interface is entropy stable, then the scheme (3.21) is entropy stable.

Proof. According to (3.23), the entropy production rate at the interface is

(ψ i
k − (vi

k)
T f̂i+1/2) − (ψ i+1

0 − (vi+1
0 )T f̂i+1/2) = (vi+1

0 − vi
k)

T f̂(ui
k,ui+1

0 ) − (ψ i+1
0 − ψ i

k)

which is non-positive as ̂f is entropy stable. By the assumption of periodic or compactly supported boundary condition, the 
whole scheme is entropy stable. �
Remark 3.2. Along the lines of [15], the entropy stable nodal DG scheme can be written in the finite volume manner

�xi

2
ω j

dui
j

dt
+ (fi

j+1/2 − fi
j−1/2) = 0 (3.30)

where

fi
j+1/2 =

⎧⎪⎨⎪⎩
f̂i−1/2 j = −1

f̂i+1/2 j = k

2
∑ j

l=0

∑k
r= j+1 SlrfS(ui

l ,ui
r) 0 ≤ j ≤ k − 1

(3.31)

The entropy stability is also transformed into

�xi

2
ω j

dU i
j

dt
+ (F i

j+1/2 − F i
j−1/2) ≤ 0 (3.32)

where

F i
j+1/2 =

⎧⎪⎨⎪⎩
1
2 ((vi−1

k + vi
0)

T f̂i−1/2 − (ψ i−1
k + ψ i

0)) j = −1
1
2 ((vi

k + vi+1
0 )T f̂i+1/2 − (ψ i

k + ψ i+1
0 )) j = k∑ j

l=0

∑k
r= j+1 Slr((vi

l + vi
r)

T fS(ui
l ,ui

r) − (ψl + ψr)) 0 ≤ j ≤ k − 1

(3.33)

A Lax–Wendroff type argument will yield that, if a sequence of numerical solutions whose mesh size tends to zero converges 
boundedly and a.e. to some function, then the function is a weak solution of (1.1) supporting the required entropy condition. 
This is enough to determine the entropy solution of scalar conservation laws with strictly convex flux functions [48].

One may be tempted to let ̂f be the entropy conservative flux, giving rise to an entropy conservative scheme. However, 
entropy should be dissipated at shock waves and entropy conservative schemes will produce strong oscillations near shocks. 
The construction of entropy stable fluxes can be divided into two categories. In [38,7,5,17], the authors build ̂f by adding 
some numerical diffusion operators, of Lax–Friedrichs type or Roe type, to the entropy conservative flux, so that the amount 
of entropy dissipation can be precisely determined. On the other hand, it has been known for decades that the widely used 
upwind numerical fluxes, including monotone fluxes for scalar conservation laws and Godunov-type fluxes for systems, 
are entropy stable. Here we will follow the latter approach because of other desirable properties of upwind fluxes (e.g. 
bound-preserving property).

Theorem 3.5. In the scalar case, suppose ̂ f (uL, uR) is monotone such that ̂ f is a non-decreasing function of its first argument and a 
non-increasing function of its second argument. Then ̂ f is entropy stable.

Proof. By the mean value theorem, there exists ṽ between v L and v R such that

ψR − ψL = (v R − v L)g(̃v) = (v R − v L) f (u(̃v))

Since u(v) is an increasing function, u(̃v) is also between uL and uR . By the monotonicity of f̂ we have

(uR − uL)( f̂ (uL, uR) − f (u(̃v))) ≤ 0 (3.34)

Consequently

(ψR − ψL) − f̂ (uL, uR)(v R − v L) = (v R − v L)( f (u(̃v)) − f̂ (uL, uR)) ≥ 0
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We remark that (3.34) is exactly the characterization of the E-flux [46]. �
For systems, most popular numerical fluxes rely on Riemann solvers, which exactly compute or approximate the solution 

of the Riemann problem⎧⎪⎨⎪⎩
∂u
∂t + ∂f(u)

∂x = 0

u(x,0) =
{

uL x ≤ 0

uR x > 0

(3.35)

The solution of the Riemann problem is self-similar. We assume that our Riemann solver also has self-similar structure and 
is denoted by q(x/t; uL, uR). Let λL and λR be the leftmost and rightmost wave speed such that

q(r;uL,uR) =
{

uL r ≤ λL

uR r ≥ λR
(3.36)

The Riemann solver should be conservative. For any SL ≤ min{λL, 0} and S R ≥ max{λR , 0}, integrating along the rectangle 
[SL, S R ] × [0, 1] yields

S R∫
S L

q(r;uL,uR)dr − (S R uR − SLuL) + (fR − fL) = 0 (3.37)

The Godunov-type flux follows from integration along [0, S R ] × [0, 1] or [SL, 0] × [0, 1] [32]:

f̂(uL,uR) = fR +
S R∫

0

q(r;uL,uR)dr − S R uR = fL −
0∫

S L

q(r;uL,uR)dr − SLuL (3.38)

The following theorem reveals the condition to make ̂f entropy stable.

Theorem 3.6. Assume that the Riemann solver also satisfies the entropy inequality such that for any S L ≤ min{λL, 0} and S R ≥
max{λR , 0},

S R∫
S L

U (q(r;uL,uR))dr − (S R U R − SL U L) + F R − F L ≤ 0 (3.39)

Then the corresponding Godunov-type flux is entropy stable.

Proof. By (3.38) and Jensen’s inequality,

S R∫
0

U (q(r;uL,uR))dr ≥ S R U (
1

S R

S R∫
0

q(r;uL,uR)dr) = S R U (uR + 1

S R
(̂f(uL,uR) − fR))

0∫
S L

U (q(r;uL,uR))dr ≥ −SL U (− 1

SL

0∫
S L

q(r;uL,uR)dr) = −SL U (uL + 1

SL
(̂f(uL,uR) − fL))

Summing them up and applying (3.39) gives

S R(U (uR + 1

S R
(̂f(uL,uR) − fR)) − U R) − SL(U (uL + 1

SL
(̂f(uL,uR) − fL)) − U L) + F R − F L ≤ 0

We send S R → ∞ and SL → −∞. The first term converges to vT
R (̂f(uL, uR) − fR) and the second term converges to 

vT
L (̂f(uL, uR) − fL). The inequality above simplifies to

vT
R (̂f(uL,uR) − fR) − vT

L (̂f(uL,uR) − fL) + F R − F L = (vR − vL)
T f̂(uL,uR) − (ψR − ψL) ≤ 0

which is exactly the condition of an entropy stable flux. �
The Riemann problem can be solved exactly for shallow water equations and Euler equations. The resulting numerical 

flux is called Godunov flux. Since the exact solutions satisfy entropy conditions, we immediately have the following corollary.
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Corollary 3.1. Godunov flux is entropy stable.

The computation of exact Riemann solver often requires several Newton–Raphson iteration steps. Practically we resort 
to approximate Riemann solvers to reduce computational cost. A commonly used approximate Riemann solver is the HLL 
Riemann solver [29], which assumes a constant middle state. We first set values to λL and λR . Then

q(r;uL,uR) =

⎧⎪⎨⎪⎩
uL r ≤ λL

uR r ≥ λR
λR uR−λL uL−(fR−fL)

λR−λL
λL < r < λR

(3.40)

Inserting (3.38), we obtain the HLL flux

f̂(uL,uR) =

⎧⎪⎨⎪⎩
fL λL ≥ 0

fR λR ≤ 0
λR fL−λL fR+λLλR (uR−uL)

λR−λL
λL < 0 < λR

(3.41)

Note that the local Lax–Friedrichs flux is simply a special case of HLL flux by choosing λL = −λ and λR = λ. The HLL flux 
(and local Lax–Friedrichs flux) is entropy stable provided we approximate λL and λR properly.

Corollary 3.2. If λL is not larger than the true leftmost wave speed and λR is not smaller than the true rightmost wave speed, the HLL 
flux is entropy stable.

Proof. It suffices to prove (3.39). Since the approximate wave fan is larger than the true wave fan and the middle state 
is constant. The HLL Riemann solver is simply an average of the exact Riemann solver. Another application of Jensen’s 
inequality completes the proof. �

The computation of λL and λR is, however, not trivial. Simplistic approximation usually fails to bound the true wave 
speeds. Toro [59,60] recommends the two-rarefaction approximation, and Guermond and Popov [27] prove that the two-
rarefaction approximated wave speeds indeed provide the correct bounds for Euler equations with 1 ≤ γ ≤ 5/3. We can 
also prove the similar result for shallow water equations. More details on two-rarefaction approximation will be given in 
Appendix A.

Remark 3.3. Semidiscrete analysis is a crucial assumption. Fully discrete entropy stability analysis is available for first-order 
schemes, and implicit time integration [44]. The entropy stability of high-order schemes equipped with explicit time inte-
gration, such as strong stability preserving (SSP) Runge–Kutta methods [25,52], is still an open problem. There are positive 
results for the L2 stability of the Runge–Kutta DG discretization of linear advection equation [64], but the nonlinear (in the 
sense of both flux function and entropy function) analogue is difficult to prove.

3.4. Compatibility with limiters

As in the classical DG scheme, it is possible to design TVD/TVB limiter and/or bound-preserving limiter as an extra 
stabilizing mechanism. Limiters tend to squeeze the data towards the cell average, and hence make total entropy smaller. 
We formulate such intuition in the following lemma.

Lemma 3.1. Suppose α j > 0, u j ∈ � for 0 ≤ j ≤ k with 
∑k

j=0 α j = 1. Define the average u = ∑k
j=0 α ju j . We modify these values 

without changing the average. That is, let ̃u j = u + θ j(u j − u) such that 0 ≤ θ j ≤ 1 and 
∑k

j=0 α jũ j = u. Then for any convex entropy 
function U , we have

k∑
j=0

α j U (̃u j) ≤
k∑

j=0

α j U (u j) (3.42)

Proof. Since 
∑k

j=0 α jũ j = ∑k
j=0 α j(u + θ j(u j − u)) = u,

k∑
j=0

α j(1 − θ j)u j = (

k∑
j=0

α j(1 − θ j))u

By the convexity of U ,



440 T. Chen, C.-W. Shu / Journal of Computational Physics 345 (2017) 427–461
U (̃u j) ≤ θ j U (u j) + (1 − θ j)U (u), (

k∑
j=0

α j(1 − θ j))U (u) ≤
k∑

j=0

α j(1 − θ j)U (u j)

Hence

k∑
j=0

α j U (̃u j) ≤
k∑

j=0

α j(θ j U (u j) + (1 − θ j)U (u)) =
k∑

j=0

α jθ j U (u j) + (

k∑
j=0

α j(1 − θ j))U (u)

≤
k∑

j=0

α jθ j U (u j) +
k∑

j=0

α j(1 − θ j)U (u j) =
k∑

j=0

α j U (u j) �

The bound-preserving limiter was developed by Zhang and Shu in [66,67] to maintain the physical bound � of numerical 
approximations, such as the maximum principle for scalar conservation laws and positivity of density and pressure for Euler 
equations. This technique is constructed on Gauss–Lobatto nodes, so that it perfectly matches our nodal DG scheme. We 
will clarify the theoretical issues of bound-preserving limiter in Appendix B. In a nutshell, we compute the cell average 
ui = ∑k

j=0
ω j
2 ui

j and perform a simple linear limiting procedure with some 0 ≤ θ ≤ 1 such that ũi
j = ui + θ(ui

j − ui) ∈ �. 
Clearly, we have the following entropy stability result due to Lemma 3.1.

Theorem 3.7. Bound-preserving limiter does not increase entropy.

Bound-preserving limiter helps enhance robustness, but the solution profile may still contain oscillations. The TVD/TVB 
limiter is well suited for damping oscillations. For scalar conservation laws, the TVD type limiting procedure can be defined 
as

ũi
0 = ui − m(ui − ui

0, ui+1 − ui, ui − ui−1), ũi
k = ui + m(ui

k − ui, ui+1 − ui, ui − ui−1)

ũi
j = ui + θ(ui

j − ui) with θ = (̃ui
0 − ui) + (̃ui

k − ui)

(ui
0 − ui) + (ui

k − ui)
, 1 ≤ j ≤ k − 1

We set θ such that cell average does not change. The minmod function m is

m(a,b, c) =
{

s min{|a|, |b|, |c|} if s = sign(a) = sign(b) = sign(c)

0 otherwise

The TVB (total variation bounded) limiter is devised by replacing m with the modified minmod function m̃ [50].

m̃(a,b, c) =
{

a if |a| ≤ Mh2

sign(a)max{|m(a,b, c)|, Mh2} if |a| > Mh2

Here, h = max1≤i≤N �xi and M is a parameter that has to be tuned adequately.

Theorem 3.8. For scalar conservation laws, the TVD/TVB limiter mentioned above does not increase entropy.

Proof. We only focus on the TVD limiter. The proof for the TVB limiter is exactly the same. Without loss of generality we 
assume that ui = 0. According to Lemma 3.1, we only need to show 0 ≤ ũi

j/ui
j ≤ 1 for each 0 ≤ j ≤ k. By the definition of 

minmod function,

ũi
0

ui
0

= −m(−ui
0,−ui−1, ui+1)

ui
0

∈ [0,1], ũi
k

ui
k

= m(ui
k,−ui−1, ui+1)

ui
k

∈ [0,1]

It remains to prove that 0 ≤ θ ≤ 1. If ui
0 and ui

k have the same sign, it is obvious. Otherwise we assume that ui
0 < 0, 

ui
k > 0 and ui

0 + ui
k ≥ 0. Then ̃ui

0 = − min{−ui
0, (ui−1)−, (ui+1)+} and ̃ui

k = min{ui
k, (ui−1)−, (ui+1)+}. It is easy to verify that 

0 ≤ ũi
0 + ũi

k ≤ ui
0 + ui

k . Other cases can be proved in a similar fashion. �
Remark 3.4. In general the TVD/TVB limiter for systems is not guaranteed to be entropy stable. The reason is that different 
components or characteristics are limited independently, which does not satisfy the assumption of Lemma 3.1 and the 
influence on total entropy is undecided. Certainly we could come up with a limiter that squeezes all components to the 
same degree, but it might be too restrictive.
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Remark 3.5. There is a still a gap in our result: entropy stability relies on semi-discrete analysis, while limiters can only be 
applied to fully discrete schemes. If we assume the fully discrete version of (3.21) is entropy stable, since limiters do not 
increase total entropy, the scheme modified by limiters is also entropy stable.

4. Generalization to triangular meshes

In this section, we move to the two-dimensional systems of conservation laws

∂u

∂t
+ ∂f1(u)

∂x1
+ ∂f2(u)

∂x2
= 0 (4.1)

The one-dimensional framework can be directly applied to rectangular meshes through tensor product. The generalization to 
triangular meshes requires some extra effort in that we need to find high order SBP operators on triangles. We prove that the 
SBP property is related to a special quadrature rule of degree 2k − 1 on the triangle and of degree 2k over edges. The mass 
matrix and boundary matrices come from quadrature weights and the difference matrices can be devised appropriately.

4.1. SBP operators on triangles

The computational domain is divided into triangular elements. We assume periodic or compactly supported boundary 
condition, and that there is no hanging node in the triangular mesh. Without loss of generality we work on the reference 
element

T = {x : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1} (4.2)

Let k ∈ N be the order of SBP operators. Pk(T ) is the set of polynomials of degree up to k restricted on T . The dimension 
of Pk(T ) is

n∗
k = (k + 1)(k + 2)

2

We aim to find a degree 2k − 1 quadrature rule associated with nk nodes {x j}nk
j=1 and positive weights {ω j}nk

j=1. Vector 
notations are again adopted. The restriction of function u on quadrature points is denoted by

�u = [
u(x1) · · · u(xnk )

]T

Let {pl(x)}n∗
k

l=1 be a set of basis functions of Pk(T ). We define the Vandermonde matrix V whose columns are the basis 
functions evaluated at nodes.

V = [ �p1 �p2 · · · �pn∗
k

]
Likewise we introduce V x1 and V x2 whose columns are derivatives of the basis functions.

V x1 = [
∂x1 �p1 ∂x1 �p2 · · · ∂x1 �pn∗

k

]
, V x2 = [

∂x2 �p1 ∂x2 �p2 · · · ∂x2 �pn∗
k

]
The k-th order SBP operators, constructed on nodes {x j}nk

j=1, are defined as follows. It is stronger than the definition in [34]
as we also require diagonal boundary matrices.

Definition 4.1. Consider the diagonal mass matrix consisting of quadrature weights.

M = diag{ω1, · · · ,ωnk } (4.3)

Difference matrices D1, D2 are k-th order SBP approximation of the gradient operator if
(i). D1 �p = ∂x1 �p and D2 �p = ∂x2 �p for any p ∈Pk(T ). In other words,

D1 V = V x1 , D2 V = V x2 (4.4)

(ii). Let S1 = M D1 and S2 = M D2 be the stiffness matrices. We have the SBP property

S1 + S T
1 = B1 = diag{τ1,1, · · · , τ1,nk }, S2 + S T

2 = B2 = diag{τ2,1, · · · , τ2,nk } (4.5)

B1 and B2 are diagonal boundary matrices such that τ1, j = τ2, j = 0 whenever x j /∈ ∂T .

B1 and B2 actually represent a quadrature rule over edges. The next theorem states that the algebraic degree of accuracy 
of the boundary quadrature rule is at least 2k.
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Theorem 4.1. Assume that there exist k-th order SBP difference matrices D1, D2 , and boundary matrices B1, B2 . Then for any p ∈
P2k(T ), we have

nk∑
j=0

τ1, j p(x j) =
∫
∂T

pn1dS,

nk∑
j=0

τ2, j p(x j) =
∫
∂T

pn2dS (4.6)

where n = [n1 n2]T is the outer normal vector on ∂T .

Proof. For any p1, p2 ∈Pk(T ), integration by parts tells us∫
T

(p1
∂ p2

∂x1
+ p2

∂ p1

∂x1
)dx =

∫
∂T

p1 p2n1dS

Since the left hand side is an integration of a degree 2k − 1 polynomial, it is equal to the quadrature

�p1
T M∂x1 �p2 + �p2

T M∂x1 �p1 = �p1
T M D1 �p2 + �p2

T M D1 �p1

= �p1
T
(S1 + S T

1 ) �p2 = �p1
T B1 �p2 =

nk∑
j=1

τ1, j p1(x j)p2(x j)
(4.7)

Hence the first equation of (4.6) holds for all p = p1 p2 such that p1, p2 ∈Pk(T ). In particular it is satisfied by all monomials 
with degree up to 2k, and so satisfied by all p ∈ P2k(T ). By the same token we can prove the second equation. �
Corollary 4.1. If B1 and B2 correspond to a degree 2k boundary quadrature rule, then

V T M V x1 + V T
x1

M V = V T B1 V , V T M V x2 + V T
x2

M V = V T B2 V (4.8)

Proof. It is simply a rephrasing of (4.7). �
We now turn to the opposite direction. The following theorem guarantees the existence of SBP difference matrices as 

long as we have B1 and B2 satisfying (4.6). To the best of our knowledge, this is the first construction of triangular SBP 
operators with diagonal mass matrix and diagonal boundary matrices.

Theorem 4.2. Assume that nk ≥ n∗
k and V has linearly independent columns. If B1 and B2 correspond to a degree 2k boundary quadra-

ture rule, there exist k-th order difference matrices that meet the SBP property. To be more specific, if {pl(x)}n∗
k

l=1 is an orthonormal set 
under discrete norm M such that V T M V = I , then we can compute D1 and D2 by

D1 = 1

2
(M−1 + V V T )B1(I − V V T M) + V x1 V T M (4.9a)

D2 = 1

2
(M−1 + V V T )B2(I − V V T M) + V x2 V T M (4.9b)

Proof. It suffices to verify that the matrices given by (4.9) satisfy (4.4) and (4.5). For a more general basis set we can always 
orthonormalize it and apply (4.9). Since V T M V = I and (I − V V T M)V = 0, D1 V = V x1 and D2 V = V x2 . As for the SBP 
property,

S1 = M D1 = 1

2
(I + M V V T )B1(I − V V T M) + M V 1 V T M

= 1

2
B1 + 1

2
(M V V T B1 − B1 V V T M) + M(V x1 V T − 1

2
V V T B1 V V T )M

After summing S1 and its transpose, the first term becomes B1 and the second term vanishes. By (4.8), the third term is

M(V x1 V T + V V T
x1

− V V T B1 V V T )M = M((I − V V T M)V x1 V T + V V T
x1

(I − M V V T ))M

Since the columns of V x1 are linear combinations of columns of V , (I − V V T M)V x1 = 0, the third term also vanishes. 
Therefore S1 + S T

1 = B1. The proof of S2 + S T
2 = B2 is the same. �

Remark 4.1. In the one-dimensional case, nk = n∗
k = k + 1 and V is invertible. We simply take D = V −1 V x . Here we always 

need more than n∗ nodes to accomplish the quadrature rule, which complicates the derivation of difference matrices.
k
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Fig. 4.1. Distributions of quadrature points on T with k = 1,2,3,4.

Our remaining task is to find the quadrature rule that achieves interior and boundary accuracy simultaneously. For 
boundary accuracy, we put k + 1 Legendre–Gauss points along each edge. Let {τ j}nk

j=1 denote the Legendre–Gauss weights. 
Then the diagonal elements of boundary matrices are

τ1, j =
{

n1(x j)τ j x j ∈ ∂T

0 x j /∈ ∂T
, τ2, j =

{
n2(x j)τ j x j ∈ ∂T

0 x j /∈ ∂T

Let us summarize the prerequisites of the quadrature rule.

• It is symmetric so that adjacent elements can be glued together.
• The quadrature weights should be positive to make M positive-definite.
• It is exact for polynomials up to degree 2k − 1.
• The quadrature points include k + 1 Legendre–Gauss points on each edge.

Quadrature rules that meet these requirements are investigated in the literature. We use the software presented in [63]
to obtain the rules of order k = 1, 2, 3 and 4.1 The locations of quadrature points are illustrated in Fig. 4.1. For reference, we 
also list the coordinates of quadrature points and their quadrature weights in Appendix C.

Remark 4.2. The same requirements also arise in [68] where the authors tried to implement bound-preserving limiter on 
triangular meshes. They proposed a generic quadrature rule based on three warped transformation from a unit square to T . 
However, nk = 3k(k + 1) for such technique, which is unnecessarily large.

To compute the difference matrices, we follow the standard practice in spectral element method and start with the set 
of orthonormal polynomials on triangle [40]. It is not an orthonormal basis under the discrete norm as the quadrature 
rule is not equal to exact integration for polynomials of degree 2k. We still need to perform orthonormalization procedure. 
However, the condition number of the Vandermonde matrix will be small enough to prevent large error. For k = 1, 2, it is 
possible to use symbolic computation exclusively and compute the exact values of SBP matrices.

Finally, for a general triangle element T̂ such that the Jacobian matrix of affine mapping T �→ T̂ is denoted by J , the 
local SBP operators are

M̂ = det( J )M

D̂1 = 1

det( J )
( J22 D1 − J21 D2), D̂2 = 1

det( J )
(− J12 D1 + J11 D2)

B̂1 = J22 B1 − J21 B2, B̂2 = − J12 B1 + J11 B2

(4.10)

Remark 4.3. Conceptually, the SBP framework can be further generalized to higher dimensional simplex elements and even 
polygonal elements without any difficulty, as long as we find the quadrature rules, which could be a challenging task in 
practice.

4.2. The entropy stable nodal DG schemes

With the SBP operators at hand, we are ready to mimic the procedure in Section 3 and develop high order entropy 
stable nodal DG schemes on triangular meshes. Analogously, we define the two-dimensional entropy conservative fluxes 
and entropy stable fluxes.

1 http :/ /lsec .cc .ac .cn /phg /download /quadrule .tar.bz2.

http://lsec.cc.ac.cn/phg/download/quadrule.tar.bz2
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Definition 4.2. Consistent, symmetric numerical fluxes f1,S (u j, ul) and f2,S (u j, ul) are entropy conservative for a given en-
tropy function U if

(vl − v j)
T f1,S(u j,ul) = ψ1,l − ψ1, j, (vl − v j)

T f2,S(u j,ul) = ψ2,l − ψ2, j (4.11)

Definition 4.3. Given a normal vector n ∈ R
2, a directional numerical flux ̂f(u, uout, n) is consistent if

f̂(u,u,n) = n1f1(u) + n2f2(u) (4.12)

It is called conservative if

f̂(uout,u,−n) = −̂f(u,uout,n) (4.13)

A consistent and conservative directional numerical flux is entropy stable for a given entropy function U if

(vout − v)T f̂(u,uout,n) − (ψout
n − ψn) ≤ 0, where ψn = n1ψ1 + n2ψ2 (4.14)

Here the “out” superscript refers to the value from the other side of the interface.

Computationally efficient entropy conservative fluxes can be described in the same manner as in Section 3.2. The direc-
tional numerical fluxes correspond to directional Riemann solvers with the flux function fn . As a consequence, the upwind 
numerical fluxes are still entropy stable. Since two-dimensional shallow water equations and Euler equations are rotationally 
invariant, the one-dimensional Riemann solvers can be directly used.

For clarity of notations, we explain the entropy stable nodal DG scheme on the reference element. Numerical solution 
collocated at the nk quadrature points will be evolved. Let �u denote the numerical solution and �f∗ stand for the vector of 
interface fluxes:

f∗, j =
{̂

f(u j,uout
j ,n(x j)) x j ∈ ∂T

0 x j /∈ ∂T

Similar to (3.21), the entropy stable nodal DG scheme is given by

du j

dt
+ 2

nk∑
l=1

D1, jlf1,S(u j,ul) + 2
nk∑

l=1

D2, jlf2,S(u j,ul) = 1

ω j
(τ1, jf1, j + τ2, jf2, j − τ jf∗, j) (4.15)

The main properties of the scheme are outlined in the following theorem. We will omit most parts of the proof since it is 
almost the same as its one-dimensional counterpart.

Theorem 4.3. Assume that f1,S and f2,S are symmetric and consistent, and that ̂f is conservative and consistent. Then (4.15) is conser-
vative and k-th order accurate. If we further assume that f1,S and f2,S are entropy conservative, and that ̂f is entropy stable, (4.15) is 
entropy conservative within single element and entropy stable across interfaces.

Proof. The proof of accuracy is the same as Theorem 3.3. As for conservation and entropy stability, we have

d

dt
(

nk∑
j=1

ω ju j) = −
nk∑

j=1

τ jf∗, j (4.16)

and

d

dt
(

nk∑
j=1

ω j U j) =
nk∑
j=1

(τ1, jψ1, j + τ2, jψ2, j − τ jv
T
j f∗, j) =

nk∑
j=1

τ j(ψn, j − vT
j f∗, j) (4.17)

Hence the scheme is locally conservative and entropy conservative. Since ̂ f(u j, uout
j , n) and ̂ f(uout

j , u j, −n) cancel out, the 
scheme is also globally conservative. The entropy production rate at interface x j is

τ j(vout
j − v j)

T f̂(u j,uout
j ,n) − τ j(ψ

out
n, j − ψn, j) ≤ 0

Therefore entropy is dissipated at the interface. �
Remark 4.4. The bound-preserving limiter can again be imposed naturally without affecting entropy stability. However, it is 
hard to design entropy stable TVD/TVB limiters.
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Remark 4.5. The link between the entropy stable nodal DG scheme and the classical DG scheme seems vague due to the 
fact that the degree of freedom (nk) is larger than the dimension of the underlying polynomial basis (n∗

k ). We can build 
the bridge by considering the virtual element framework [2,3]. Let V k(T ) be a local space containing Pk(T ) such that 
dim V k(T ) = nk . {Ll(x)}nk

l=1 is the set of Lagrangian basis functions such that Ll ∈ V k(T ) and Ll(x j) = δ jl . We define the 
discrete inner product 〈·, ·〉ω corresponding to M , and discrete bilinear forms 〈·, ·〉τ1 and 〈·, ·〉τ2 corresponding to B1 and B2. 
�k

ω is set to be the L2 projection to Pk(T ) under 〈·, ·〉ω . Recalling (4.9), we can characterize the stiffness matrices as

S1, jl = 1

2
〈(I + �k

ω)l j, (I − �k
ω)ll〉τ1 + 〈�k

ωl j,
∂(�k

ωll)

∂x1
〉ω (4.18a)

S2, jl = 1

2
〈(I + �k

ω)l j, (I − �k
ω)ll〉τ2 + 〈�k

ωl j,
∂(�k

ωll)

∂x2
〉ω (4.18b)

If we choose f1,S (u j + ul) = 1
2 (f1(u j) + f1(ul)) and f2,S (u j + ul) = 1

2 (f2(u j) + f2(ul)), (4.15) turns into the nodal DG scheme

M
d�u
dt

− ST
1
�f1 − ST

2
�f2 = −B�f∗, B = B ⊗ I p, B = diag{τ1, · · · , τnk } (4.19)

with virtual element type stiffness matrices.

4.3. Wall boundary condition of Euler equations

So far we have always assumed periodic or compactly supported boundary condition. There is a need to investigate the 
solid wall boundary condition of Euler equations. We will prove that the commonly used mirror state treatment is entropy 
stable. This subsection extends the one-dimensional analysis in [54].

Consider the two-dimensional Euler equation

∂

∂t

⎡⎢⎢⎣
ρ

ρw1
ρw2

E

⎤⎥⎥⎦ + ∂

∂x

⎡⎢⎢⎣
ρw1

ρw2
1 + p

ρw1 w2
w1(E + p)

⎤⎥⎥⎦ + ∂

∂ y

⎡⎢⎢⎣
ρw2

ρw1 w2

ρw2
2 + p

w2(E + p)

⎤⎥⎥⎦ = 0 (4.20)

Here, w = [
w1 w2

]T
is the velocity field. The equation of state is

E = 1

2
ρ(w2

1 + w2
2) + p

γ − 1
(4.21)

The entropy function, entropy variables and potential fluxes are given by

U = − ρs

γ − 1
, v =

⎡⎢⎢⎢⎣
γ −s
γ −1 − ρ(w2

1+w2
2)

2p
ρw1/p
ρw2/p
−ρ/p

⎤⎥⎥⎥⎦ , ψ1 = ρw1, ψ2 = ρw2 (4.22)

At the wall boundary, we prescribe the no penetration condition; that is,

wn = w1n1 + w2n2 = 0 (4.23)

Suppose that we have a numerical state u on the solid wall. In order to weakly impose the no penetration condition, we 
have to provide an artificial state uout on the other side of the interface, and compute the numerical flux ̂f(u, uout, n). Let 
wn⊥ = n2 w1 − n2 w2. The reflecting technique introduces a mirror state such that

ρout = ρ, pout = p, wout
n = −wn, wout

n⊥ = wn⊥ (4.24)

The following theorem affirms the entropy stability of the reflecting technique.

Theorem 4.4. If ̂f(u, uout, n) is Godunov flux or HLL flux and uout is taken to be the mirror state (4.24), then such boundary treatment 
is entropy stable.

Proof. According to (4.17), we need to prove that the entropy production rate at the interface

ψn − vT f̂(u,uout,n)

is non-positive. By rotational symmetry, it is enough to consider the vertical wall x1 = 0. Then n = [
1 0

]T and
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u = [
ρ ρw1 ρw2 E

]T
, uout = [

ρ −ρw1 ρw2 E
]T

The numerical flux simply solves the one-dimensional Riemann problem in x direction. The exact Riemann solver will give 
a middle state u∗ such that w∗

1 = 0. Hence the Godunov flux is

f̂(u,uout,n) = f1(u∗) = [
0 p∗ 0 0

]T (4.25)

For the HLL Riemann solver, the two-rarefaction approximation yields λL = −λ and λR = λ. Then we actually have the local 
Lax–Friedrichs flux

f̂(u,uout,n) = 1

2
(f1(u) + f1(uout)) − λ

2
(uout − u) = [

0 p + λρw1 0 0
]T (4.26)

In both cases only the second component of ̂f is nonzero. On the other hand, since

v =
[

γ −s
γ −1 − ρ(w2

1+w2
2)

2p
ρw1

p
ρw2

p −ρ
p

]T
, ψn = ρw1

vout =
[

γ −s
γ −1 − ρ(w2

1+w2
2)

2p −ρw1
p

ρw2
p −ρ

p

]T
, ψout

n = −ρw1

we can easily verify that

ψn − vT f̂(u,uout,n) = (vout)T f̂(u,uout,n) − ψout
n = 1

2
((vout − v)T f̂(u,uout,n) − (ψout

n − ψn))

It is non-positive due to the entropy stability of Godunov flux and HLL flux. �
5. Generalization to convection–diffusion equations

In this section, we consider the entropy stable discretization of convection dominated convection–diffusion equations in 
two space dimensions. Recalling (2.6), we use the second derivatives of entropy variables to represent the diffusion term:

∂u

∂t
+

2∑
j=1

∂

∂x j
(f j(u) −

2∑
l=1

Ĉ jl(v)
∂v

∂xl
) = 0 (5.1)

where[
Ĉ11(v) Ĉ12(v)

Ĉ21(v) Ĉ22(v)

]
should be symmetric semi-positive-definite to ensure entropy dissipation. The convective part will be handled in the same 
way as section 4. For the diffusive part, we present an approach closely resembling the LDG method of Cockburn and Shu 
[11], with provable entropy stability. The treatment on Cartesian meshes was recognized in [5].

We rewrite (5.1) as the mixed formulation

∂u

∂t
+

2∑
j=1

∂

∂x j
(f j(u) − q j) = 0, q j =

2∑
l=1

Ĉ jl(v)θθθ l, θθθ l = ∂v

∂xl
(5.2)

Let Q = [
q1 q2

]
and � = [

θθθ1 θθθ2
]
. The LDG type approach evolves the nodal discretization of u and � simultaneously. 

The coupling between adjoining elements are achieved by ̂f(u, uout, n) and single-valued numerical fluxes of v and q:

v̂ = v̂(v,vout), Q̂ = [
q̂1 q̂2

] = Q̂ (v,vout, Q , Q out) (5.3)

Once again �u, �θθθ1 and �θθθ2 denote the numerical solutions collocated at the SBP nodes in the reference element. �q1 and �q2
are given by

q j,r =
2∑

l=1

Ĉ jl(vr)θθθ l,r, 1 ≤ r ≤ nk

Additionally, we also let �v∗ , �q1,∗ and �q2,∗ describe the vectors of corresponding numerical fluxes. The nodal version of the 
LDG scheme is

d�u
dt

+ C.D.T −
2∑

j=1

D j �q j = C.B.T −
2∑

j=1

M−1B j(�q j − �q j,∗) (5.4a)

�θθθ l − Dl�v = −M−1Bl(�v − �v∗), l = 1,2 (5.4b)
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where C.D.T and C.B.T are the convective difference terms and convective boundary terms in (4.15). We can also write down 
the component-wise formulation:

dur

dt
+ 2

2∑
j=1

nk∑
s=1

D j,rsf j,S(ur,us) −
2∑

j=1

nk∑
s=1

D j,rsq j,s =
2∑

j=1

τ j,r

ωr
(f j,r − q j,r + q j,∗,r) − τr

ωr
f∗,r (5.5a)

θθθ l,r −
nk∑

s=1

Dl,rsvs = τl,r

ωr
(v∗,r − vr), l = 1,2 (5.5b)

As indicated in the next theorem, the conventional LDG fluxes will lead to an entropy stable scheme.

Theorem 5.1. We introduce the average form {·} and the jump form [·] over the element boundary with outer normal vector n =[
n1 n2

]T
.

{v} = 1

2
(v + vout), {Q } = 1

2
(Q + Q out)

[v] = (v − vout)nT , [Q ] = (Q − Q out)n
(5.6)

Given parameters α ≥ 0 and βββ ∈R
2 , if we use the LDG fluxes

v̂(v,vout) = {v} + [v]βββ, Q̂ (v,vout, Q , Q out) = {Q } − [Q ]βββT − α[v] (5.7)

Then the nodal scheme (5.4) is entropy stable.

Proof. We multiply (5.4a) by �vT M and (5.4b) by �qT
l M, and sum them up. The convective part is already entropy stable. The 

remaining terms are

−
2∑

l=1

�qT
l M�θθθ l +

2∑
l=1

(�vT MDl�ql + �qT
l MDl�v − �vT Bl(�ql − �ql,∗) − �qT

l Bl(�v − �v∗))

= −
2∑

l=1

�qT
l M�θθθ l +

2∑
l=1

(�vT Bl�ql,∗ + �qT
l Bl�v∗ − �vT Bl�ql)

The first sum is the interior contribution, it is non-positive since

−
2∑

l=1

�qT
l M�θθθ l = −

nk∑
r=1

ωr(

2∑
l=1

qT
l,rθθθ l,r) = −

nk∑
r=1

ωr(

2∑
j=1

2∑
l=1

θθθ T
j,r Ĉ jl(vr)θθθ l,r) ≤ 0

The boundary contribution reduces to

nk∑
r=1

2∑
l=1

τl,r(vT
r ql,∗,r + qT

l,rv∗,r − vT
r ql,r) =

nk∑
r=1

τr(

2∑
l=1

nl,r(vT
r ql,∗,r + qT

l,rv∗,r − vT
r ql,r)) ≡

nk∑
r=1

τr Ar

If xr ∈ ∂T , we add the corresponding terms from the other side of the interface. The contribution at xr is

Ar + Aout
r =

2∑
l=1

nl,r[(vr − vout
r )T q̂l(vr,vout

r , Q r, Q out
r )

+ (ql,r − qout
l,r )T v̂(v,vout) − (vT

r ql,r − (vout
r )T qout

l,r )]
(5.8)

Due to the identity

vT
r ql,r − (vout

r )T qout
l,r = 1

2
(vr + vout

r )T (ql,r − qout
l,r ) + 1

2
(vr − vout

r )T (ql,r + qout
l,r )

rearranging the terms in (5.8) and plugging (5.7) yields

Ar + Aout
r = tr([vr]T Q̂ (vr,vout

r , Q r, Q out
r )) + [Q r]T v̂(vr,vout

r ) − {vr}T [Q r] − tr([vr]T {Q r})
= −αtr([vr]T [vr]) ≤ 0

Therefore the boundary contribution is also non-positive and our nodal LDG scheme is entropy stable. �
Remark 5.1. Both α and βββ may be a function of x. We can also replace α by a symmetric positive-definite p × p matrix.
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Table 6.1
Example 6.1.1: accuracy test of the one-dimensional linear advection equation associated with 
initial data u(x, 0) = sin4(x) and exponential entropy function at t = 2π .

k N L1 error Order L2 error Order L∞ error Order

2 20 7.030e−2 – 3.347e−2 – 2.688e−2 –
40 5.363e−3 3.712 2.669e−3 3.649 2.340e−3 3.522
80 4.575e−4 3.551 2.205e−4 3.598 1.846e−4 3.664
160 4.414e−5 3.374 2.230e−5 3.305 2.582e−5 2.838
320 4.745e−6 3.218 2.595e−6 3.103 3.626e−6 2.832
640 5.485e−7 3.113 3.181e−7 3.028 4.794e−7 2.919

3 20 3.097e−3 – 1.514e−3 – 1.890e−3 –
40 1.675e−4 4.208 8.672e−5 4.126 1.359e−4 3.798
80 1.053e-y5 3.993 5.372e−6 4.013 8.928e−6 3.928
160 6.571e−7 4.002 3.354e−7 4.001 5.664e−7 3.978
320 4.107e−8 4.000 2.096e−8 4.000 3.553e−8 3.995

4 10 2.608e−2 – 1.178e−2 – 8.580e−3 –
20 8.325e−4 4.969 3.763e−4 4.969 3.497e−4 4.617
40 2.623e−5 4.988 1.179e−5 4.997 9.860e−6 5.149
80 8.170e−7 5.004 3.683e−7 5.000 3.084e−7 4.999
160 2.553e−8 5.000 1.151e−8 5.000 9.454e−9 5.028

6. Numerical experiments

In this section, we test the performance of the entropy stable nodal DG schemes (3.21) and (4.15). One-dimensional tests 
are performed on uniform grids and two-dimensional tests are performed on unstructured triangular meshes generated by 
Gmsh2 [21]. The schemes are integrated in time with third order SSP Runge–Kutta method (given in Appendix B). Unless 
otherwise pointed out, Godunov flux will be employed at element interfaces. For Euler equations, the ratio of specific heat 
γ is taken to be 7/5, and the entropy conservative flux (3.29) will be used as it seems to give better results than (3.28).

6.1. Smooth tests

Various test problems with smooth solutions are presented to validate the accuracy of the scheme. We would like 
to compute on elements of degree k = 2, 3, 4. If k = 2, we set the CFL number to be 0.15; otherwise we will let �t =
CFL · h(k+1)/3 where h is the characteristic length of the mesh, so that time error will be dominated by space error.

Example 6.1.1. We solve the one-dimensional linear advection equation

∂u

∂x
+ ∂u

∂t
= 0, x ∈ [0,2π ]

with periodic boundary condition and initial data u(x, 0) = sin4(x). The exact solution is u(x, t) = sin4(x − t). The entropy 
function in this case is the exponential function U = eu , and the entropy conservative flux is given by

f S(uL, uR) = (uR − 1)euR − (uL − 1)euL

euR − euL
, if uL 	= uR

When |uL − uR | is small, such formula suffers from round-off effect. Instead, we should use Taylor’s expansion to approx-
imate the numerator and the denominator. Numerical errors and orders of convergence of the entropy stable nodal DG 
scheme with k = 2, 3, 4 are listed in Table 6.1. The scheme is evolved up to t = 2π . We observe optimal convergence for all 
values of k, better than the prediction of truncation error analysis. Probably the reason is that Gauss–Lobatto quadrature is 
exact for the linear convective part.

Example 6.1.2. Next we consider the one-dimensional Burgers equation

∂u

∂t
+ ∂(u2/2)

∂x
= 0, x ∈ [0,2π ]

with periodic boundary condition and initial data u(x, 0) = 0.5 + sin x. The exact solution can be obtained by tracing back 
characteristic lines. We choose square entropy function U = u2/2. Then the entropy stable nodal DG scheme is equivalent to 
the skew-symmetric splitting. In Table 6.2, we present the errors at t = 0.5 when the solution is still smooth. It is evident 
that the convergence rate is slightly below optimal, especially for the L∞ error. However, when k = 3 we still have optimal 
convergence.

2 http :/ /gmsh .info/.

http://gmsh.info/
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Table 6.2
Example 6.1.2: accuracy test of the one-dimensional Burgers equation associated with initial 
data u(x, 0) = 0.5 + sin x and square entropy function at t = 0.5.

k N L1 error Order L2 error Order L∞ error Order

2 40 1.320e−3 – 1.178e−3 – 3.269e−3 –
80 2.071e−4 2.672 2.284e−4 2.366 7.923e−4 2.045
160 3.162e−5 2.711 4.316e−5 2.404 2.078e−4 1.931
320 4.724e−6 2.743 7.979e−6 2.435 5.100e−5 2.026
640 6.911e−7 2.773 1.450e−6 2.460 1.290e−5 1.983
1280 9.930e−8 2.799 2.606e−7 2.477 3.209e−6 2.008

3 40 4.344e−5 – 4.566e−5 – 1.658e−4 –
80 3.348e−6 3.698 3.703e−6 3.624 1.610e−5 3.364
160 2.344e−7 3.836 2.771e−7 3.740 1.306e−6 3.624
320 1.577e−8 3.894 1.950e−8 3.829 9.301e−8 3.812
640 1.036e−9 3.928 1.336e−9 3.868 6.252e−9 3.895

4 20 6.782e−5 – 6.319e−5 – 1.525e−4 –
40 2.630e−6 4.688 2.849e−6 4.471 1.126e−5 3.760
80 1.067e−7 4.624 1.374e−7 4.375 7.149e−7 3.977
160 4.203e−9 4.666 6.385e−9 4.427 4.342e−8 4.041
320 1.576e−10 4.737 2.858e−10 4.481 2.620e−9 4.050

Table 6.3
Example 6.1.3: accuracy test of the two-dimensional linear advection equation associated with 
initial data u(x, 0) = sin(2πx1) sin(2πx2) and square entropy function at t = 0.2.

k h L1 error Order L2 error Order L∞ error Order

2 1/8 3.380e−3 – 6.000e−3 – 6.890e−2 –
1/16 5.032e−4 2.748 9.868e−4 2.604 1.809e−2 1.930
1/32 6.170e−5 3.028 1.213e−4 3.024 2.292e−3 2.981
1/64 7.916e−6 2.962 1.551e−5 2.967 3.387e−4 2.758
1/128 9.890e−7 3.001 1.926e−6 3.010 4.419e−5 2.938
1/256 1.244e−7 2.991 2.414e−7 2.996 5.929e−6 2.898

3 1/8 2.329e−4 – 4.375e−4 – 8.752e−3 –
1/16 2.114e−5 3.461 3.536e−5 3.629 8.228e−4 3.411
1/32 1.790e−6 3.562 2.810e−6 3.654 6.194e−5 3.731
1/64 1.429e−7 3.647 2.210e−7 3.668 4.310e−6 3.845
1/128 1.063e−8 3.748 1.658e−8 3.737 3.183e−7 3.759
1/256 7.341e−10 3.856 1.160e−9 3.838 2.194e−8 3.859

4 1/8 1.295e−5 – 2.230e−5 – 6.184e−4 –
1/16 4.534e−7 4.837 9.969e−7 4.483 6.627e−5 3.222
1/32 1.528e−8 4.891 2.824e−8 5.141 1.401e−6 5.564
1/64 4.923e−10 4.956 8.940e−10 4.982 6.046e−8 4.535
1/128 1.547e−11 4.992 2.773e−11 5.011 1.897e−9 4.994

Example 6.1.3. We continue to solve some two-dimensional smooth test cases. The first example is the two-dimensional 
linear advection equation

∂u

∂t
+ ∂u

∂x1
+ ∂u

∂x2
= 0, x ∈ [0,1]2

with periodic boundary condition and initial data u(x, 0) = sin(2πx1) sin(2πx2), and square entropy function U = u2/2. The 
exact solution is u(x, t) = u(x1 − t, x2 − t, 0). We test the two-dimensional entropy stable nodal DG scheme on a hierarchy 
of unstructured triangular meshes. Errors and orders of convergence at t = 0.2 are shown in Table 6.3. Once again we obtain 
optimal convergence.

Example 6.1.4. We consider the two-dimensional Burgers equation

∂u

∂t
+ ∂u2

∂x1
+ ∂u2

∂x2
= 0, x ∈ [0,1]2

with periodic boundary condition and initial data u(x, 0) = 0.5 sin(2π(x1 + x2)), and square entropy function U = u2/2. 
Exact solution follows from the solution of one-dimensional Burgers equation of η = x1 + x2. The entropy stable nodal DG 
scheme is evolved up to t = 0.05 when the solution is still smooth. Errors and orders of convergence are displayed in 
Table 6.4. The results are similar to its one-dimensional counterpart. Convergence rate is below optimal.
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Table 6.4
Example 6.1.4: accuracy test of the two-dimensional Burgers equation associated with initial 
data u(x, 0) = 0.5 sin(2π(x1 + x2)) and square entropy function at t = 0.05.

k h L1 error Order L2 error Order L∞ error Order

2 1/16 1.354e−3 – 3.275e−3 – 5.954e−2 –
1/32 2.394e−4 2.500 7.046e−4 2.217 1.646e−2 1.855
1/64 3.900e−5 2.618 1.406e−4 2.325 4.894e−3 1.750
1/128 5.773e−6 2.756 2.456e−5 2.518 1.269e−3 1.948
1/256 8.431e−7 2.776 4.109e−6 2.579 2.413e−4 2.394

3 1/16 1.890e−4 – 6.252e−4 – 1.968e−2 –
1/32 2.482e−5 2.929 1.058e−4 2.563 4.859e−3 2.018
1/64 2.327e−6 3.415 1.106e−5 3.258 7.311e−4 2.733
1/128 2.065e−7 3.494 1.158e−6 3.255 1.195e−4 2.613
1/256 1.898e−8 3.444 1.236e−7 3.229 1.299e−5 3.202

4 1/16 3.740e−5 – 1.454e−4 – 6.039e−3 –
1/32 2.787e−6 3.746 1.427e−5 3.349 1.068e−3 2.500
1/64 1.348e−7 4.370 7.651e−7 4.221 8.839e−5 3.595
1/128 5.566e−9 4.598 3.722e−8 4.362 6.398e−6 3.788
1/256 2.293e−10 4.602 1.696e−9 4.456 3.059e−7 4.387

Table 6.5
Example 6.1.5: accuracy test of isentropic vortex problem for two-dimensional Euler equations 
at t = 1. Results of the density are tabulated.

k h L1 error Order L2 error Order L∞ error Order

2 10/8 2.299e−1 – 6.053e−2 – 8.735e−2 –
10/16 4.204e−2 2.451 1.223e−2 2.307 2.957e−2 1.563
10/32 6.598e−3 2.671 1.918e−3 2.673 5.162e−3 2.518
10/64 9.330e−4 2.822 2.688e−4 2.835 1.064e−3 2.279
10/128 1.273e−4 2.873 3.609e−5 2.897 1.717e−4 2.631
10/256 1.652e−5 2.947 4.779e−6 2.917 2.280e−5 2.913

3 10/8 4.344e−2 1.160e−2 2.960e−2
10/16 3.976e−3 3.450 1.155e−3 3.327 4.271e−3 2.793
10/32 3.632e−4 3.453 1.030e−4 3.487 2.652e−4 4.009
10/64 3.041e−5 3.578 8.538e−6 3.593 4.557e−5 2.541
10/128 2.536e−6 3.584 7.148e−7 3.578 3.793e−6 3.587
10/256 1.990e−7 3.672 5.670e−8 3.656 2.720e−7 3.802

4 10/8 7.754e−3 – 2.136e−3 – 8.836e−3 –
10/16 3.941e−4 4.298 1.308e−4 4.030 5.582e−4 3.985
10/32 1.546e−5 4.672 4.858e−6 4.750 2.549e−5 4.452
10/64 5.620e−7 4.782 1.806e−7 4.749 1.680e−6 3.923
10/128 2.020e−8 4.798 6.433e−9 4.812 8.998e−8 4.223

Example 6.1.5 (Isentropic vortex). The last smooth test case is the isentropic vortex advection problem for the two-
dimensional Euler equations, taken from Shu [51]. The computational domains is [0, 10]2 and the initial condition is given by

w1(x,0) = 1 − (x2 − y2)φ(r), w2(x,0) = 1 + (x1 − y1)φ(r)

T (x,0) = 1 − γ − 1

2γ
φ(r)2, ρ(x,0) = T

1
γ −1 , p(x,0) = T

γ
γ −1

where (y1, y2) is the initial center of the vortex and

φ(r) = εeα(1−r2), r =
√

(x1 − y1)2 + (x2 − y2)2

The parameters are ε = 5
2π , α = 0.5 and (y1, y2) = (5, 5). The vortex will be advected in the diagonal direction and the 

exact solution is u(x, t) = u(x1 − t, x2 − t, 0). We use the exact solution to prescribe boundary conditions. Table 6.5 summa-
rizes errors and orders of convergence of the density at t = 1. Here the convergence rate is also slightly below optimal, but 
better than Burgers equation. It is probably due to the linear behavior of exact solution.

6.2. Discontinuous tests

Discontinuous test problems are provided to illustrate shock-capturing capability. We will only show the numerical solu-
tions of schemes with k = 2 and CFL number 0.15. The bound-preserving limiter can be added to make the scheme robust. 
Specifically, for Euler equations, it is named the positivity-preserving limiter to prevent negative density or negative pres-
sure. However, due to the lack of entropy stable non-oscillatory limiters for systems or in two dimensions (we only prove 
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Fig. 6.1. Example 6.2.1. Numerical solution of the Riemann problem of Buckley–Leverett equation at t = 1 with the square entropy function and an ad hoc 
entropy function. Computational domain [−0.5, 0.5] is decomposed into N = 80 cells. Bound-preserving limiter is used. The solid line represents the exact 
entropy solution and the triangle symbols are cell averages.

the entropy stability of one-dimensional TVD/TVB limiter for scalar equations), there are still spurious oscillations in some 
test results.

Example 6.2.1. We consider the following Riemann problem of Buckley–Leverett equation

∂u

∂t
+ ∂

∂x

( 4u2

4u2 + (1 − u)2

)
= 0, u(x,0) =

{
−3 if x < 0

3 if x ≥ 0

The exact entropy solution contains two shock waves connected by a flat rarefaction wave that is close to 0. For such 
a nonconvex flux function, the choice of entropy function will affect the performance of numerical scheme substantially. 
We first test the scheme with square entropy function U = u2/2. The computational domain is [−0.5, 0.5] and the end 
time t = 1. We also apply the bound-preserving limiter with � = [−3, 3]. The numerical solution on 80 cells is plotted in 
the left panel of Fig. 6.1. Evidently it does not agree with the entropy solution. Then we try an ad hoc entropy function 
U = ∫

arctan(20u)du. The entropy variable v = arctan(20u), which emphasizes the states near u = 0. In fact it can be 
viewed as a mollified version of the Kruzhkov’s entropy function [42] U = |u|. The numerical solution with the same setting 
is depicted in the right panel of Fig. 6.1. The result is quite satisfactory thanks to the carefully chosen entropy function.

Example 6.2.2 (Sod’s shock tube). It is a classical Riemann problem of one-dimensional Euler equations. The computational 
domain is [−0.5, 0.5] and the initial condition is

(ρ, w, p) =
{

(1,0,1) if x < 0

(0.125,0,0.1) if x ≥ 0

The exact solution contains a left rarefaction wave, a right shock wave and a middle contact discontinuity. The classical DG 
scheme tends to blow up due to emergence of negative density or negative pressure unless we apply positivity-preserving 
limiter or TVD/TVB limiter. The entropy stable nodal DG scheme, on the other hand, can be evolved without any limiter. 
Fig. 6.2 illustrates the profiles of density, velocity and pressure at t = 0.13 with 130 cells. All waves are resolved correctly 
despite some slight oscillations at the right shock wave. Entropy stability contributes to a more robust scheme for this test 
problem.

Example 6.2.3 (Sine-shock interaction). This benchmark test problem of one-dimensional Euler equations was given by Shu 
and Osher in [53]. The solution has complicated structure in that it contains both strong and weak shock waves and highly 
oscillatory smooth waves. The computational domain is [−5, 5] and the initial condition is

(ρ, w, p) =
{

(3.857143,2.629369,10.3333) if x < −4

(1 + 0.2 sin(5x),0,1) if x ≥ −4

We compute the reference solution using a first order scheme on a very fine mesh with 80000 cells. Once again the classical 
DG scheme suffers from negative pressure or negative density, while the entropy stable nodal DG scheme works without any 
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Fig. 6.2. Example 6.2.2: Numerical solution of Sod’s shock tube problem at t = 0.13 with 130 cells. We do not apply any limiter. The solid line represents 
the exact entropy solution and the triangle symbols are cell averages.

limiter. The plots of density, velocity and pressure at t = 1.8 with 150 cells are displayed in Fig. 6.3. The scheme performs 
well despite some minor oscillations.

Example 6.2.4 (Two-dimensional Riemann problem). We solve the Riemann problem of the two-dimensional Burgers equation

∂u

∂t
+ ∂u2

∂x1
+ ∂u2

∂x2
= 0, x ∈ [0,1]2

subject to the initial condition

u(x,0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.25 if x1 < 0.5 and x2 < 0.5

−0.1 if x1 < 0.5 and x2 ≥ 0.5

0.4 if x1 ≥ 0.5 and x2 < 0.5

−0.5 if x1 ≥ 0.5 and x2 ≥ 0.5

The exact solution for t > 0 is as follows [61,26]
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Fig. 6.3. Example 6.2.3: Numerical solution of sine-shock interaction test problem at t = 1.8 with 150 cells. We do not apply any limiter. The solid line 
represents the reference solution computed with 80000 cells and the triangle symbols are cell averages.

u(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.25 if x1 < 1
2 − 3t

5 and x2 < 1
2 + t

30

−0.1 if x1 < 1
2 − 3t

5 and x2 ≥ 1
2 + t

30

0.25 if 1
2 − 3t

5 ≤ x1 < 1
2 − t

4 and x2 < −8x1
7 + 15

14 − 15t
28

−0.5 if 1
2 − 3t

5 ≤ x1 < 1
2 − t

4 and x2 ≥ −8x1
7 + 15

14 − 15t
28

0.25 if 1
2 − t

4 ≤ x1 < 1
2 + t

2 and x2 < x1
6 + 5

12 − 5t
24

−0.5 if 1
2 − t

4 ≤ x1 < 1
2 + t

2 and x2 ≥ x1
6 + 5

12 − 5t
24

2x1−1
4t if 1

2 + t
2 ≤ x1 < 1

2 + 4t
5 and x2 < x1 − 5

18t (x1 + t − 1
2 )2

−0.5 if 1
2 + t

2 ≤ x1 < 1
2 + 4t

5 and x2 ≥ x1 − 5
18t (x1 + t − 1

2 )2

0.4 if x1 ≥ 1
2 + 4t

5 and x2 < 1
2 − t

10

−0.5 if x1 ≥ 1
2 + 4t

5 and x2 ≥ 1
2 − t

10

We choose the square entropy function U = u2/2 and run the entropy stable nodal DG scheme up to t = 0.5 on a triangular 
mesh with h = 1/128. The bound-preserving limiter with � = [−0.5, 0.4] is also imposed. The numerical result is shown in 
the left panel of Fig. 6.4, and the absolute value error is also plotted in the right panel where we use logarithmic scale and 
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Fig. 6.4. Example 6.2.4: Numerical solution and error of a Riemann problem of two-dimensional Burgers equation at t = 0.5 on a mesh with h = 1/128. 
Entropy function is U = u2/2 and bound-preserving limiter is used. Error is shown in logarithmic scale.

Fig. 6.5. Example 6.2.5: illustration of the computational domain and the unstructured mesh with h = 1/20.

values less than 10−16 are transformed to 10−16. The scheme successfully captures the correct profile. Error is very small 
unless near shock waves.

Example 6.2.5 (Double Mach reflection). This famous test problem of two-dimensional Euler equations was proposed by 
Woodward and Colella in [62] and has been intensively studied in the last few decades. It involves a Mach 10 shock which 
makes a 60

◦
angle with a reflecting wall. The undisturbed air ahead of the shock has a density of 1.4 and a pressure of 1. 

Usually people solve the problem with rectangular computational domain and horizontal wall. Here we use the flexibility of 
the triangular mesh to consider the original physical problem with a horizontally moving shock and a wall inclined with a 
30

◦
angle (e.g. [58]). We illustrate the computational domain and the unstructured mesh with h = 1/20 in Fig. 6.5. Initially 

the shock is positioned at x1 = 0. Inflow/outflow boundary conditions are prescribed for the left and right boundaries, and 
at the top boundary the flow values are set to describe the exact motion of shock.

The entropy stable nodal DG scheme is implemented with positivity-preserving limiter and local Lax–Friedrichs flux. We 
do not use Godunov flux since the exact Riemann solver at element interface sometimes contains vacuum state. The plots 
of density and pressure at t = 0.2 with mesh size h = 1/240 are given in Fig. 6.6. Similar to the observations in [65], the 
solution is more oscillatory than results obtained via WENO scheme or DG scheme with TVD/TVB limiter, but it also catches 
some interesting features such as the small roll-ups due to Kelvin–Helmholtz instability, which indicates low numerical 
dissipation of our scheme.
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Fig. 6.6. Example 6.2.5: profiles of density and pressure at t = 0.2 on a mesh with h = 1/240. 40 equally spaced contour levels are used for both plots.

Example 6.2.6 (Shock diffraction). A shock wave diffracting at a sharp corner is another popular test problem for two-
dimensional Euler equations. In [12,67] the results of a Mach 5.09 shock diffracting at a 90

◦
edge are presented. Here we 

would like to study a Mach 10 shock diffracting at a 120
◦

degree [68]. The computational domain and the triangular mesh 
with h = 1/4 are demonstrated in Fig. 6.7. The shock is initially located at x1 = 3.4 and 6 ≤ x2 ≤ 11, moving into undis-
turbed air with a density of 1.4 and a pressure of 1. Boundary conditions are inflow at the left/top boundary (in accordance 
with the exact shock motion), and outflow at the right/bottom boundary.

We still use positivity-preserving limiter and local Lax–Friedrichs interface flux. The contour plots of density and pressure 
at t = 0.9 with mesh size h = 1/40 are depicted in Fig. 6.8. The result is comparable to the one in [68] despite some 
oscillations and overshoots near the shock wave.

7. Concluding remarks

In this paper, we construct a (formally) high order entropy stable nodal DG scheme for systems of conservation laws. It 
does not require exact integration and can be stable with respect to an arbitrary entropy function. Therefore the limitations 
of the Jiang-Shu cell entropy inequality are circumvented. Our scheme has good flexibility in that it is compatible with

(i) bound-preserving limiter and (one-dimensional scalar) TVD/TVB limiter.
(ii) unstructured triangular meshes, and potentially simplex meshes and polygonal meshes.

(iii) convection–diffusion equations through an LDG type approach.
(iv) reflecting wall boundary conditions of Euler equations.

The entropy stability is guaranteed by three main ingredients: high order SBP operators, entropy conservative fluxes and 
entropy stable fluxes. The usual nodal DG scheme can be recovered if we take the entropy conservative flux to be the 
arithmetic mean. The major obstacle to exceeding one-dimensional framework is the construction of multi-dimensional SBP 
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Fig. 6.7. Example 6.2.6: illustration of the computational domain and the unstructured mesh with h = 1/4.

Fig. 6.8. Example 6.2.6: profiles of density and pressure at t = 0.9 on a mesh with h = 1/20. 40 equally spaced contour levels are used for both plots.

operators with diagonal mass matrix and diagonal boundary matrices. We achieve this by finding a special quadrature rule 
and the formula of difference matrices (4.9).

We perform a large number of numerical tests whose results are comparable to existing schemes. In some cases the 
entropy stable nodal DG scheme shows better robustness and potential of computing physically correct solution if we 
choose a different entropy function. However, we should also point out some disadvantages of our scheme:

(i) The quadrature rule is of degree 2k − 1. We detect reduced orders of convergence in nonlinear smooth tests.
(ii) For triangular meshes, the degree of freedom on each element is larger than the dimension of polynomial space, which 

is computationally more expensive than the classic DG scheme.
(iii) The stabilization due to entropy dissipation at element interfaces is not enough. There are evident oscillations in some 

profiles of Euler equations.

The investigation of entropy stable oscillation control mechanism, such as entropy stable limiters for systems, and introduc-
tion of artificial viscosity, is a possible direction of our future study.

Appendix A. Two-rarefaction approximation

For Euler equations, the solution of the Riemann problem consists of three characteristic waves. The left wave and right 
wave are either rarefaction fans or shocks, and the middle wave is a contact discontinuity. The pressure is continuous across 
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the contact discontinuity and thus constant in the middle region, denoted by p∗ . We find the exact value of p∗ by solving 
the following equation.

ϕ(p∗, pL,ρL) + ϕ(p∗, pR ,ρR) + w R − w L = 0 (A.1)

where

ϕ(p∗, p,ρ) =
{
ϕr(p∗, p,ρ) = 2a

γ −1 ((
p∗
p )(γ −1)/2γ − 1) if p∗ ≤ p (rarefaction wave)

ϕs(p∗, p,ρ) = p∗−p√
(ρ((γ −1)p∗+(γ +1)p)/2

if p∗ > p (shock wave)
(A.2)

and a = √
γ p/ρ is the sound speed. ϕ is a continuous, strictly increasing and concave function of p∗ (see [60]), so that we 

can use Newton–Raphson iteration to find the unique root. Once we have p∗ , the leftmost and rightmost wave speeds are 
given by

λL = w L − aLq(p∗, pL), λR = w R + aRq(p∗, pR) (A.3)

such that

q(p∗, p) =
{

1 if p∗ ≤ p√
1 + γ +1

2γ (
p∗
p − 1) if p∗ > p

(A.4)

The following inequality is proved in [27].

Theorem A.1. If 1 < γ ≤ 5/3, ϕs(p∗, p, ρ) ≥ ϕr(p∗, p, ρ) for p∗ > p.

Proof. Substitute x = (p∗/p)(γ −1)/2γ . Then

ϕr(p∗, p,ρ) = 2a

γ − 1
(x − 1), ϕs(p∗, p,ρ) = a

γ

x2γ /(γ −1) − 1√
(γ − 1)/2γ + ((γ + 1)/2γ )x2γ /(γ −1)

Let α = 2γ /(γ − 1) ∈ [5, ∞). We need to show that

(
xα − 1

x − 1
)2 ≥ α + α(α − 1)xα, for x > 1

Rearranging the term yields

(
xα − 1

x − 1
− 1

2
α(α − 1)(x − 1))2 ≥ α2 + 1

4
α2(α − 1)2(x − 1)2 (A.5)

By Taylor’s expansion

xα − 1

x − 1
≥ α + 1

2
α(α − 1)(x − 1) + 1

6
α(α − 1)(α − 2)(x − 1)2

Inserting this inequality, we have

(
xα − 1

x − 1
− 1

2
α(α − 1)(x − 1))2 ≥ (α + 1

6
α(α − 1)(α − 2)(x − 1)2)2

≥ α2 + 1

3
α2(α − 1)(α − 2)(x − 1)2

Since α ≥ 5, (α − 2)/3 ≥ (α − 1)/4 and so (A.5) is valid. We note that in most physical applications γ does fall into the 
range (1, 5/3] (5/3 for monatomic gas and 7/5 for diatomic gas). �

Invoking Newton–Raphson iteration during all flux computations can be time-consuming. The two-rarefaction approxi-
mation assumes that the left wave and the right wave are both rarefaction waves, and provides an explicit formula of p∗ , λL

and λR . Thanks to (A.1), the approximated wave speeds bound the true wave speeds. Then we can take these wave speeds 
to construct entropy stable HLL flux (or local Lax–Friedrichs flux).

Theorem A.2. The two-rarefaction approximation solves the equation

ϕr(p∗
tr, pL,ρL) + ϕr(p∗

tr, pR ,ρR) + w R − w L = 0 (A.6)

The explicit solution is
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p∗
tr = (

aL + aR + (γ − 1)(w L − w R)/2

aL/p(γ −1)/2γ
L + aR/p(γ −1)/2γ

R

)2γ /(γ −1) (A.7)

The approximated wave speeds are

λtr,L = w L − aLq(p∗
tr, pL), λtr,R = w R + aRq(p∗

tr, pR) (A.8)

Then q∗
tr ≥ q∗ , λtr,L ≤ λL and λtr,R ≥ λR .

Proof. By Theorem A.1, ϕr ≤ ϕ for all p > 0. As both ϕ and ϕr are strictly increasing, p∗
tr ≥ p∗ . q is also an increasing 

function of p∗ . Hence λtr,L ≤ λL and λtr,R ≥ λR . �
The same argument also works for shallow water equations. We will omit the details, only giving the key inequality 

without proof. The exact Riemann solver reduces to the equation

ϕ(h∗,hL) + ϕ(h∗,hR) + w R − w L = 0 (A.9)

where

ϕ(h∗,h) =
{
ϕr(h∗,h) = 2(

√
gh∗ − √

gh) if h∗ ≤ h

ϕs(h∗,h) = (h∗ − h)

√
1
2 g h∗+h

h∗h if h∗ > h
(A.10)

When h∗ > h, it is easy to prove that

ϕs(h
∗,h) ≥ ϕr(h

∗,h) (A.11)

Therefore two-rarefaction approximation will produce proper wave speeds.

Appendix B. Bound-preserving limiter

We introduce the superscript n to represent the current time step. For the sake of simplicity we shall consider Euler 
forward time discretization and assume uniform grid. Let λ = �t/�x be the ratio of time step and mesh size. Let us start 
with the first order scheme

ui,n+1 = H(ui−1,n,ui,n,ui+1,n;λ) = ui,n − λ(̂f(ui,n,ui+1,n) − f̂(ui−1,n,ui,n)) (B.1)

It is bound-preserving if ui,n, ui,n, ui+1,n ∈ � implies ui,n+1 ∈ � provided that λ ≤ λ0 for some λ0 > 0. We will see that the 
upwind numerical fluxes in section 3.3 also correspond to bound-preserving first order schemes.

Theorem B.1. For scalar conservation laws, if f̂ is monotone and Lipschitz continuous of both arguments, and � = [m, M] for 
m, M ∈R, the corresponding first order scheme is bound-preserving.

Proof. Since f̂ is monotone, H is non-decreasing with respect to ui,n−1 and ui,n+1. Let L be the Lipschitz constant of f̂ . 
Then H is also a non-decreasing function of ui,n provided that λ ≤ 1

2L . Now if ui−1,n, ui,n, ui+1,n ∈ [m, M],

ui,n+1 ≥ H(m,m,m;λ) = m, ui,n+1 ≤ H(M, M, M;λ) = M

We see that H is bound-preserving with λ0 = 1
2L . �

Theorem B.2. For systems, if the exact Riemann solver is bound-preserving (e.g. no dry bed for shallow water equations or no vacuum 
for Euler equations), then the Godunov scheme and HLL scheme are bound-preserving.

Proof. First order schemes can be regarded as an averaging procedure of Riemann solvers when λ is small enough such 
that waves originated from different interfaces do not intersect. Since � is a convex set, the Godunov scheme is bound-
preserving. The HLL scheme is also bound-preserving due to the fact that the HLL Riemann solver is another average of the 
exact Riemann solver. �

High order schemes are generally not bound-preserving. However, we can still make sure that the cell average at next 
time step is in �. The next theorem paves the path for high order bound-preserving limiter. It can be formulated in a more 
general manner, but we stay within the context of entropy stable nodal DG scheme.

Theorem B.3. For the entropy stable nodal DG scheme whose underlying first order scheme is bound preserving, if ui,n
j ∈ � for each 

1 ≤ i ≤ N and 0 ≤ j ≤ k, we have ui,n+1 ∈ � under the CFL condition λ ≤ ω0 λ0 .
2
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Table C.1
Quadrature rules for SBP operators with k = 1, 2, 3, 4. Exact values of abscissas and weights 
are available for k = 1, 2, so that we can use symbolic computation to derive SBP operators.

Orbit Abscissas Weight

S111 (0, 1
2 −

√
3

6 ) 1
12

(a) k = 1, nk = 6

Orbit Abscissas Weight

S3
1
3

9
40

S12
1
2

1
20

S111 (0, 1
2 −

√
15

10 ) 1
48

(b) k = 2, nk = 10

Orbit Abscissas Weight

S111 (0,0.330009478207572) 0.0202282703414950
S111 (0,0.0694318442029737) 0.00754950743628280
S111 (0.1870738791912771,0.5841571139756569) 0.0555555555555556

(c) k = 3, nk = 18

Orbit Abscissas Weight

S3
1
3 0.0455499555988567

S12
1
2 0.00926854241697489

S12 0.4384239524408185 0.0623683661448868

S12 0.1394337314154536 0.0527146648104222

S111 (0,0.230765344947159) 0.0102652298402145

S111 (0,0.046910077030668) 0.00330065754050081

(d) k = 4, nk = 22

Proof. Since the scheme is conservative,

ui,n+1 = ui,n − λ(̂f(ui,n
k ,ui+1,n

0 ) − f̂(ui−1,n
k ,ui,n

0 ))

=
k∑

j=0

ω j

2
ui,n

j − λ(̂f(ui,n
k ,ui+1,n

0 ) − f̂(ui−1,n
k ,ui,n

0 ))

=
k−1∑
j=1

ω j

2
ui,n

j + ω0

2
H(ui−1,n

k ,ui,n
0 ,ui,n

k ; 2λ

ω0
) + ω0

2
H(ui,n

0 ,ui,n
k ,ui+1,n

0 ; 2λ

ω0
)

If λ ≤ ω0
2 λ0, the last two terms are in �. Then ui,n+1 ∈ � as it is a convex combination of elements in �. �

The bound-preserving limiter is a simple linear scaling procedure ũi,n
j = ui,n + θ i,n(ui,n

j − ui,n) to enforce ũi,n
j ∈ �. It can 

be enforced as long as ui,n ∈ �. Roughly speaking, for each 0 ≤ j ≤ k we compute

θ
i,n
j = max{s ∈ [0,1] : ui,n + s(ui,n

j − ui,n) ∈ �}
Then we simply let θ i,n = min0≤ j≤k θ

i,n
j . A combination of mathematical induction and Theorem B.3 tell us that we can 

apply such limiter at each time step, leading to a robust scheme whose numerical solution never goes out of �. For 
implementation details and the proof that bound-preserving limiter is genuinely high order accurate, one may check the 
papers by Zhang and Shu [66,67].

Finally, the magic of SSP time discretization enables us to go beyond Euler forward time stepping. In this paper, we use 
the third order SSP Runge–Kutta method. For an ODE system ut = Lu, the three stages at the n-th time step are

u(1) = un + �tL(un) (B.2a)

u(2) = 3

4
un + 1

4
(u(1) + �tL(u(1))) (B.2b)

un+1 = 1

3
un + 2

3
(u(2) + �tL(u(2))) (B.2c)

Since it is a convex combination of Euler forward steps, all the previous analyses are still valid.
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Table C.2
Symmetry orbits on a triangle.

Orbit Barycentric coordinates # of points

S3( 1
3 ) ( 1

3 , 1
3 , 1

3 ) 1
S21(α) permutation of (α,α,1 − 2α) 3
S111(α,β) permutation of (α,β,1 − α − β) 6

Appendix C. Quadrature rules on a triangle

The special quadrature rules designed for triangular SBP operators are listed in Table C.1. As indicated in [63], we divide 
the quadrature points into symmetry orbits. The orbit S3 only includes one point, the barycenter of the triangle. The three 
points in S21 are determined by a single abscissa, and the six points in S111 are determined by two abscissas. Table C.2
shows the idea of symmetry orbits.
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